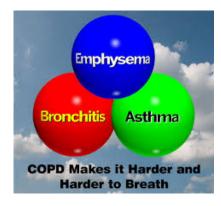
Overlap Syndrome & Treatment Compliance

Peggy Powers, RRT
Fisher & Paykel Healthcare

Objectives

- Review COPD and OSA
- Understanding Overlap Syndrome
- Identifying Patients with Overlap Syndrome
- Effective Treatment for Overlap Syndrome
- Documentation Requirements
- Compliance to therapy

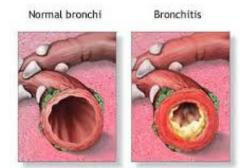


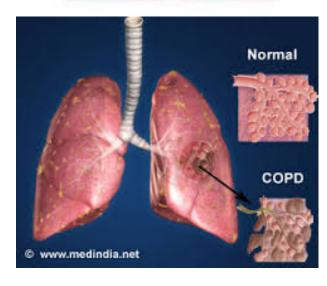
COPD

Chronic Obstructive Pulmonary Disease

Umbrella term to describe lung diseases characterized by shortness of breath/air flow limitation

- Emphysema and chronic bronchitis
- Refractory (non-reversible) asthma and some bronchiectasis


- Extrapulmonary effects: muscle myopathy, anemia, osteoporosis + depression
- High prevalence high morbidity/mortality



COPD

- Bronchitis ('blue bloaters')
 - chronic productive cough 3/12mo, 2 years
 - Hypercapnia/hypoxemia/polycythemia
- Emphysema ('pink puffers')
 - pathological diagnosis, permanent abnormal enlargement of airspaces (distal to bronchioles) and destruction of alveolar walls
- Bronchiectasis
 - damage causes wall of airway to become flabby and scarred (injury, disease)

Increased mucus production and airway obstruction Hypoxia and disruption to sleep

¹CDC; September 2014 ²COPD Foundation: 2013

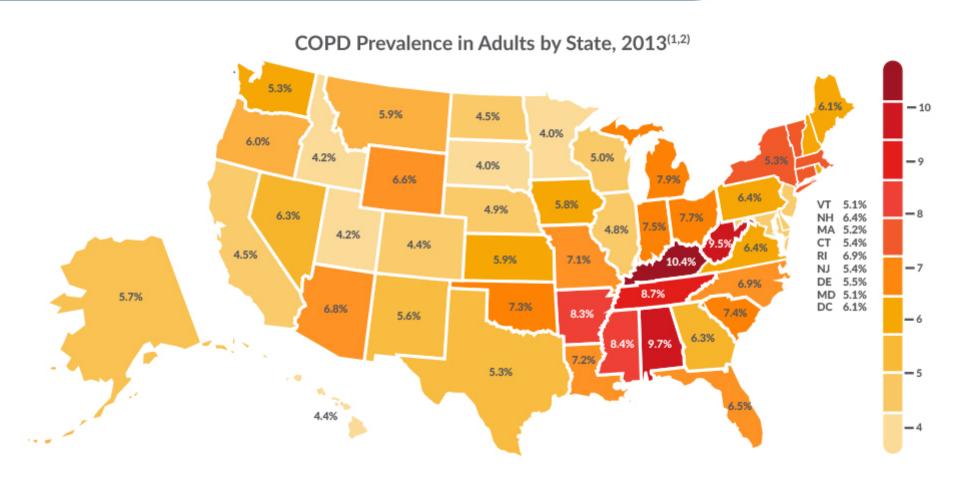
COPD

CDC Statistics:

- 3rd leading cause of death in the U.S.¹
- Estimated that 24 million adults are affected²
 - 50% with low pulmonary function were not aware
- Over 50% were women
- 22.3% reported a hospital or ED visit for COPD symptoms in previous
 12 months
- >31% unable to work

2012: US HHS reported 3.38 M Medicare FFS beneficiaries had COPD

• 82% over 65/18% younger (20% increase from 2008)

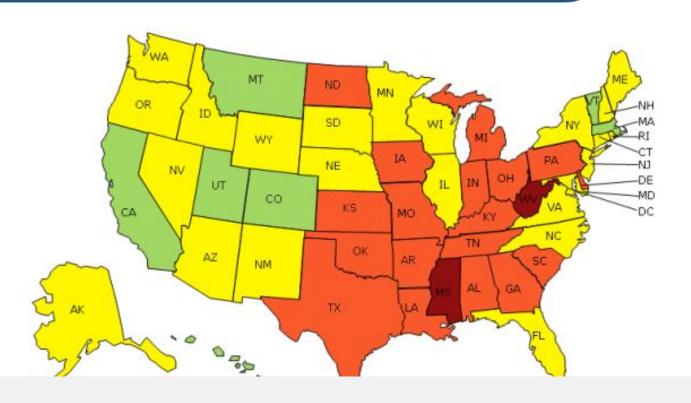

¹CDC; September 2014 (results from 2011 BRFFS)

²COPD Foundation; 2013

COPD Prevalence

Obstructive Sleep Apnea

OSA is one of the most common sleep disorders


Characterized by partial or complete collapse of the upper airway during sleep

- Effects more than 18 million Americans according to NSF
- Estimated that up to 9% of the adult population suffer from OSA¹
- Approximately 70-80% of patients are not diagnosed²
- Increase in childhood OSA due to obesity epidemic

Obesity a Major Factor

- 65% overweight (BMI >25)
- 29% obese (BMI >30)
- 26.4 adults reported that during past month, they had not participated in physical activity

What is Overlap Syndrome?

Refers to diseases that overlap one another - combined effect of multiple diseases or conditions are worse than either one alone

Overlap Syndrome

- Combination of COPD and OSA which results in nocturnal hypoventilation and hypoxemia
- First introduced in 1985 by Professor David Flenley (University of Edinburgh)
- Additive effect '1+1=3'
- More by chance than pathophysiological link
 - Chance alone suggests that one disorder has 10% chance of the other

Overlap Syndrome

A great number of patients have both COPD and OSA

- causes more severe nocturnal hypoxemia than either disease alone
- Have a substantially greater risk of morbidity and mortality, compared to those with either COPD or OSA alone
- 11% of OSA patients have some degree of COPD
- 20-40% of COPD patients have OSA

- » COPD closely related to cigarette smoking or airway contagions
- » OSA closely related to obesity and snoring

Both experience a reduction in energy/activity, which further contributes to poor health

Physiological Consequences

- Majority of patients with OSA are eucapnic during wakefulness
- Daytime hypercapnia attests to mechanical impairment
 - Obesity ¹
 - COPD ²
- Higher breathing frequency and lower tidal volume
- Increased nocturnal desaturation ³
- Increases risk for:
 - Hypercapnia
 - Pulmonary hypertension
 - Polycythemia
- Increase risk of cardiac morbidity and mortality

¹ Guilleminault et al, Ann Rev Med 1976;27:465-84

² Leech et al, Chest 1987; 92:807-13

³ Owens et al, Resp Care 2010; 55(10):1333-1346

Identifying Patients with Overlap Syndrome

Signs and Symptoms

OSA

- Snoring, choking or gasping during night
- Sleepiness during the day
- Morning headaches
- Memory, learning problems, lack of concentration
- Irritable, depressed, or moodiness
- Nocturia
- Dry mouth or scawakening

Overlap:

- Hypoxemia + hypercapnia
- Increased pulmonary artery pressure
- Older
- Similar BMI

COPD

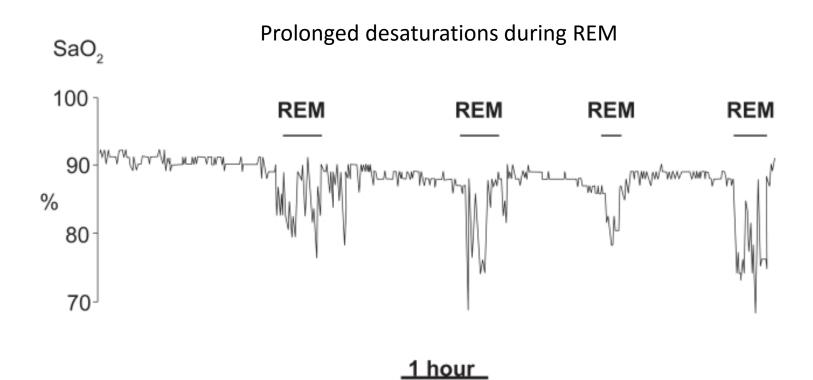
- Increase in sputum
- Increase in SOB, cough and/or wheezing
- Forgetfulness, confusion
- Trouble sleeping
- Using more pillows or sleeping in a chair instead of a bed to avoid

of fatigue and lack of istent

es, dizzy spells,

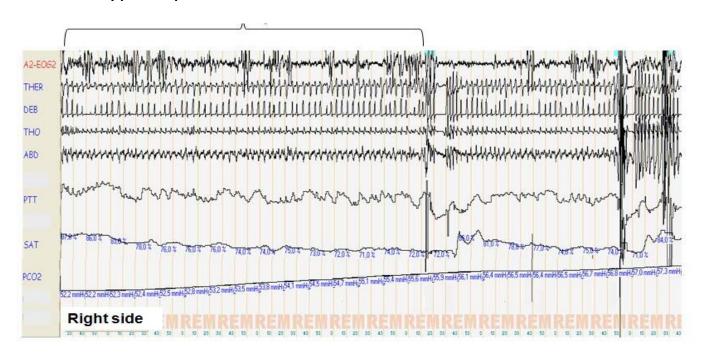
Diagnosis

Awareness of that Overlap Syndrome might be a possibility...


- Patient history + physical exam
- PFT
- Patients with a mild to moderate COPD nocturnal oximetry study
- Based on clinical findings
- Confirmed by full-night PSG lab based not HST

Increased awareness is first line of defense

Nocturnal Oximetry


J Chron Obstruct Pulmon Dis. 2006 December; 1(4): 363-372.

Published online 2006 December.

PSG of Overlap Patient

- Alveolar hypoventilation during REM
- Fragmented sleep
- Hypercapnia

Legend:

THER - Thermistor

DEB - Nasal pressure

THO - Thoracic movement

ABD - Abdominal movement

PTT - Pulse Transit

SAT - 02 Saturation

PC02 – Transcutaneous PaC02

Screening your Patients

Patient assessment for Sleep

- Persistent cough
- Inhaler use/pulmonary medications
- Home oxygen use
 - Continued desaturations with proper use
- Accessory muscle use
- Inability to lie flat
- Mobility SOB with activity

Treatment Options for the Overlap Patient

Treatment Options

- Weight loss
- Oxygen therapy
- Bronchodilator therapy manage exacerbations with anitbiotics/steroids

- 1. CPAP therapy high humidification to mobilize secretions (+ supplemental 02)¹
- 2. Bi-level ventilatory support
- 3. Volume preset ventilation
 - Most commonly used for individuals where bi-level support has failed to control sleep hypoventilation, where tracheostomy ventilation is needed
- Newer technology might include Nasal High Flow (NHF) with a high level of humidity

Weight Loss

- Weight loss can clearly be of benefit for those with OSA and obesity
- In COPD, weight loss has generally been associated with increased mortality, since cachexia (malnutrition) sets in with increasing disease severity

Oxygen Therapy

- Oxygen is a common treatment
- Shown to improve overall mortality if used for more than 18 hours per day, including during sleep

Data is lacking for improvement with oxygen therapy alone in OSA¹

- nocturnal oxygen desaturations are improved, **BUT** ...not
 - sleep architecture
 - arousals
 - blood pressure (which is improved after 2 weeks of CPAP therapy)
 - subjective daytime sleepiness

Alford Study

- 4 lpm 02 administered to 20 men with Overlap Syndrome
 - Obstructive events increased in duration (25.7 to 31.4)
 - PC02 increased (52.8 to 62.3)
- 02 should not be used alone for treatment

CPAP Therapy

CPAP remains the accepted standard treatment for OSA *and* is also the accepted standard for overlap syndrome.

- But CPAP alone may not fully correct hypoxemia, so supplemental oxygen may be required
- By using CPAP there could potentially be an unloading of the respiratory muscles which could lead to:
 - decrease hypoventilation, oxygen consumption, or carbon dioxide production by the respiratory muscles.
- These muscles may be rested by CPAP use, since it prevents the increase in upperairway resistance that occurs during sleep.
- Alternatively, CPAP may offset intrinsic PEEP in severe COPD.

Machado et al, Brazil 2010

- Evaluated the impact of OSAS treatment with CPAP on the survival of hypoxemic
 COPD patients between January 1996 and July 2006.
- CPAP therapy was associated with a higher survival in patients with moderate-tosevere OSAS and hypoxemic COPD.
- Of 603 hypoxemic COPD patients receiving LTOT, 95 were diagnosed with moderate-to-severe OSAS.

95 Patients	Treatment	Control	
CPAP adherence	61 (64%)	34	
5 year survival	71%	26%	

Toraldo et al, Spain 2010

- Supports early treatment with nasal CPAP in overlap patients.
- Included patients with both severe OSA and mild-to-moderate COPD
- After 3 months of CPAP therapy:
 - arterial blood gases and mean pulmonary artery pressure (MPAP) improved and stabilized
 - patients reported improvements in daytime sleepiness utilizing Epworth Sleepiness Score (ESS),
- The improvement in these parameters remained stable over 12 months' follow-up.

Non-Invasive Ventilation

- A subset of patients with stable COPD who may benefit from NIPPV includes
 - those with daytime hypercapnia and super-imposed nocturnal hypoventilation ¹

- Bi-level
 - The effects of b-level PAP have not been specifically evaluated²
 - Difference between IPAP and EPAP maintaining alveolar ventilation and reducing PaC02

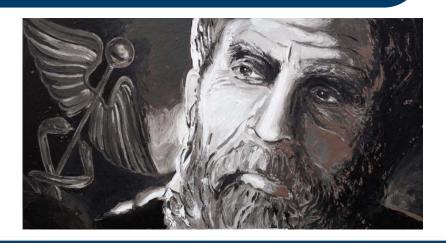
Benefits vs. Quality of Life?

Other Considerations

- Reduce alcohol consumption
 - Worsens hypoxemia¹
 - leads to hypercapnic respiratory failure²
- Smoking cessation
 - Dangers when on 02 therapy

¹ Easton et al Sleep 1987; 10:224-33

² Chan et al American Rev Respiratory Dis 1990; 141:861-5


Therapy Compliance

History

"Keep watch also on the faults of the patients which often make them lie about the taking of things prescribed."

Hippocrates, Father of Medicine, warned physicians of non-adherence

Compliance...Adherence

- Compliance degree a patient follows or completes a prescribed diagnostic, treatment, or preventive procedure
- Adherence extent a patient follows a prescribed treatment regimen and physician advice as an active participant in their own care and in collaboration with the healthcare providers

The 4A's of Adherence

 breaking down psychological barriers of diagnosis and treatment

Acquiring

the device and mask

Acclimating

to therapy

Adapting

long term

Acceptance (1)

- Acceptance must occur before adherence can be achieved
- Perceived need for CPAP therapy
- Not uncommon for patient to doubt their severity of OSA
 - First night affect
- Concerns about side effects

Acceptance

- Research has shown that educated patients are more compliant^{1,2} and spousal feelings are important³
- Education should encompass discussion about co-morbidities and long term health consequences. Provide encouragement and involve the family
- Various methods of education can be inexpensive & effective:
 - Phone calls¹
 - Literature¹
 - Attendance in group clinic²

Acquiring the Medical Device (2)

This is the time when Psychological barriers kick in.

OSA Diagnosis & Initiation of Therapy

- Perception
- Emotion
- Cognition

Psychological Adaptation Barriers

Psychological Perception	Patients develop their own beliefs/expectations before they try CPAP based upon perception of disease severity. The imposed behavior changes versus their own role in regulating health practices.
Emotional Context	Often relates to patient- doctor rapport however in OSA/CPAP devices is relevant to Aesthetics (ugly versus beautiful), sounds (buzzard versus Chime), tone qualities (authoritative – empathetic), and grammatical structure (command versus request)
Cognitive Context	The clarity of the message linked to usage and AHI – able to notice they have achieved something.

Source: M.R. Wild et al Eur Respir J 2004 24:461-465

S. Olsen et al Eur Respir J 2008 32:710-717

Acclimating

- There are a number of studies that report that the first 2 weeks of CPAP initiation are most important
 - Correlate to what the 30th day of usage may be
- Budhiraja et al reported in a study (N100)
 - 84% of patients who used CPAP for more than 4 hours/day at day 3 used CPAP for an average of more than 4 hours a day at day 30
 - Compared with only 26% of those who used CPAP for less than 4 hours/day at day 3
 - Minority of patients who used CPAP for less than 4 hours/night at day 3 and at day 7, used it for more than 4 hours a night when assessed at day 30

Adapting

- Patients experiences are different and unique to them
- Psychological and Social Factors
 - Risk perception of disease
 - Treatment outcome expectancies
 - Self efficacy
 - Coping mechanisms
 - Facilitators/barriers with treatment

Facilitators/Barriers with Treatment

- Social Support
 - CPAP users living with someone had higher use than those who lived alone¹
 - Older adherent men were more likely to attend a CPAP education support group²
 - Spousal pressure to use CPAP was negatively influential on three-month CPAP use³
- Common treatment related experiences
 - nasal stuffiness, claustrophobia, and disturbance of their bed partner

Intervention Strategies and Tools

- Educational
- Technological
- Psychosocial
- Pharmacological
- Multidimensional

Drivers of Adherence

DME Successful Sleep Lab Methods? Materials? Follow up? Physicians Frequency/ Role Triggers **Education**

What if PAP doesn't work?

Alternate therapies might be considered:

- Oral devices
- Surgery
- Nasal Valves

Therapy as an adjunct to CPAP or for mild cases of OSA:

- Nasal High Flow with high humidification
 - Washes out C02
 - Promotes deeper, slower breaths improved gas exchange
 - Flow creates PAP
 - High humidification aids in mobilizing secretions
 - Has shown improvement with lung function

Summary

- Overlap Syndrome is when COPD and OSA coexists
- Because both are so common, overlap syndrome is also common
- CPAP is gold standard for OSA
- Oxygen as needed, to reduce hypoxemia, is also commonly used with the PAP devices
- Heated Humidification (optimal levels) may enhance the adherence to CPAP treatment and is especially important for the COPD patient to mobilize secretions, reducing risk of exacerbations

References

- 1. Epidemiology, risk factors, and consequences of obstructive sleep apnea and short sleep duration
 - Al Lawati, N. M., S. R. Patel, et al. (2009). "Progress in Cardiovascular Diseases 51(4): 285-293.
- 2. Estimation of the clinically diagnosed proportion of sleep apnea syndrome in middle-aged men and women
 - Young, T., L. Evans, et al. (1997). Sleep 20(9): 705-706.
- 3. Association of Chronic Obstructive Pulmonary Disease and Obstructive Sleep Apnea Consequences
 - Zamarron et al, International Journal of COPD, 3(4), 2008; 671-682
- 4. Outcomes in Patients with Chronic Obstructive Pulmonary Disease and Obstructive Sleep Apnea
 - Marin et al American Journal of Respiratory and Critical Care Medicine, Vol. 182, No. 3 (2010), pp. 325-331.
- 5. Nasal CPAP with Supplemental 02 in Coexistent Sleep Apnoea-Hypopnoea Syndrome and Severe COPD
 - Sampol et al Eur Respiratory Journal, 1996: 9:111-6
- 6. Sleep-Disordered Breathing and COPD: The Overlap Syndrome
 - Owens and Malhotra, <u>Respir Care</u>. 2010 October; 55 (10): 1333-1346
- 7. Acute Oxygen in Patients with Sleep Apnea and COPD
 - Alford et al, Chest 1986 Jan; 89 (1): 30-8
- 8. Effect of continuous positive airway pressure versus supplemental oxygen on sleep quality in obstructive sleep apnea
 - Loredo et al, Sleep. 2006 Apr; 29(4):564-71.
- 9. Fixed-pressure nCPAP in patients with obstructive sleep apnea (OSA) syndrome and COPD a 24-month follow-up study
 - Toraldo D, De Nuccio F, Nicolardi G. Sleep Breath 2010; 14:115–123.
- 10. CPAP and survival in moderate-to-severe obstructive sleep apnoea syndrome and hypoxaemic COPD.
 - Machado MCL, Vollmer WM, Togeiro SM, et al. Eur Respir J 2010; 35:132–137.
- 11. Noninvasive ventilation for chronic obstructive pulmonary disease.
 - Nick Hill <u>Respir Care</u> 2004; 49:72–87
- 12. Association of Chronic Obstructive Pulmonary Disease and OSA
 - Chaouat et al, Am J Respir Crit Care Med 1995; 151:82-86

