Optimizing Mechanical Ventilation: The Art and Science

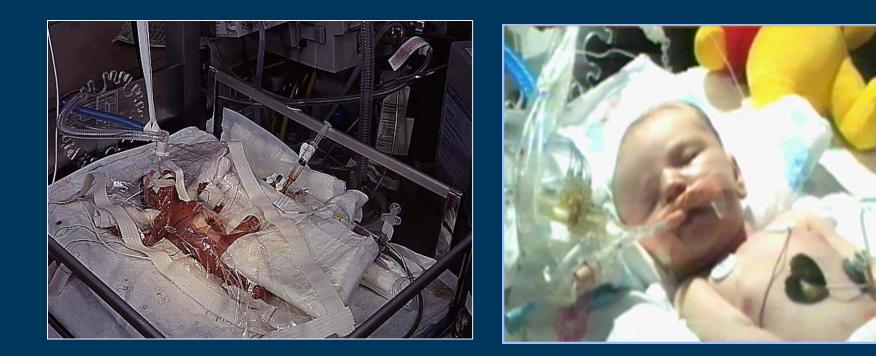
Steven M. Donn, MD, FAAP

Professor of Pediatrics Division of Neonatal-Perinatal Medicine C.S. Mott Children's Hospital <u>University</u> of Michigan Health System

Objectives

- Review the components of mechanical ventilation
- Discuss options for choosing initial ventilator settings based on individual pathophysiology
- Consider ways to avoid oxygen toxicity
- Outline strategies for weaning

Neonatal Ventilation ca. 1975


The Baby Bird

- Flow 8-10 LPM
- PIP 20 cm H₂O
- PEEP 4 cm H₂O
- T_i 0.4 sec

It Didn't Matter...

Preterm Baby RDSTerm Baby MAS

It Didn't Matter...

Preterm Baby RDS

Term Baby MAS

Neonatal Ventilation ca. 2016

Optimizing Mechanical Ventilation: Choosing the Initial Settings

A Patient

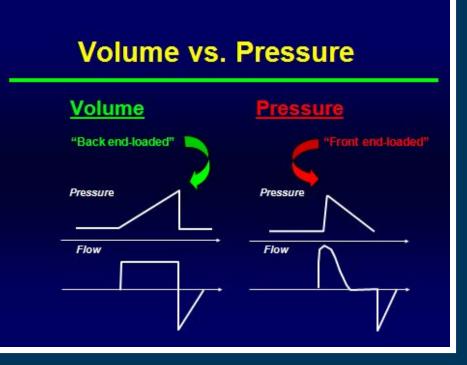
- 25 weeks, 720 grams
- 17 y/o G₁P₀
- C/S for severe pre-eclampsia, treated with MgSO₄
- One dose of betamethasone to mom
- Apgar scores 2 (HR 136) and 5 (HR 140, color pink with bagging, no tone, no respiratory effort, minimal grimace)

Initial Evaluation

ABG: 7.21/55/47
Hgb/Hct: 14.0/43%
Cord Mg⁺⁺: 5.5
BP: 36/20 (25)

Define the Pathophysiology

- Lung volumes?
- Compliance?
- Resistance?
- Time constant?
- Respiratory drive?
- Oxygenation?
- Ventilation?

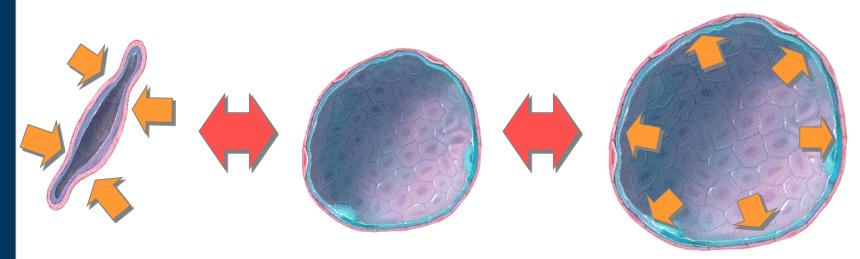

Initial Ventilatory Options

• CPAP

- Conventional (tidal) ventilation
- High-Frequency ventilation
 - >HFJV >HFOV

Target Variables

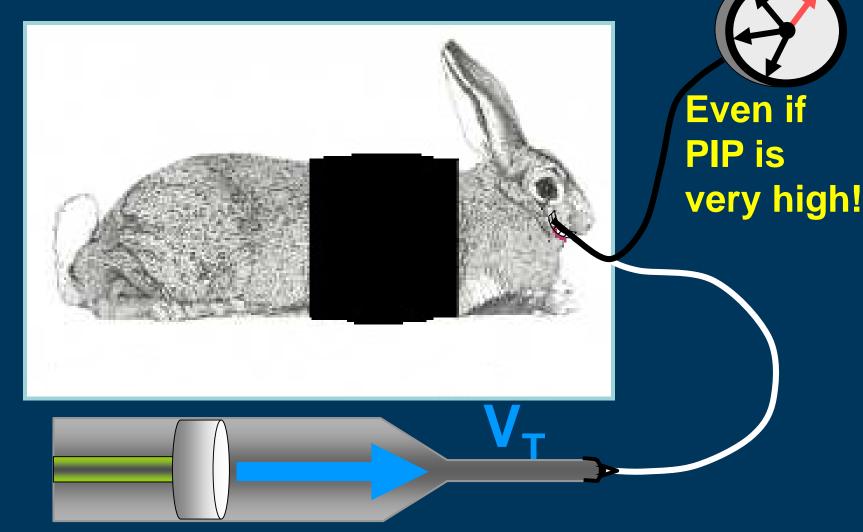
Pressure Pressure Limited Pressure Control Volume

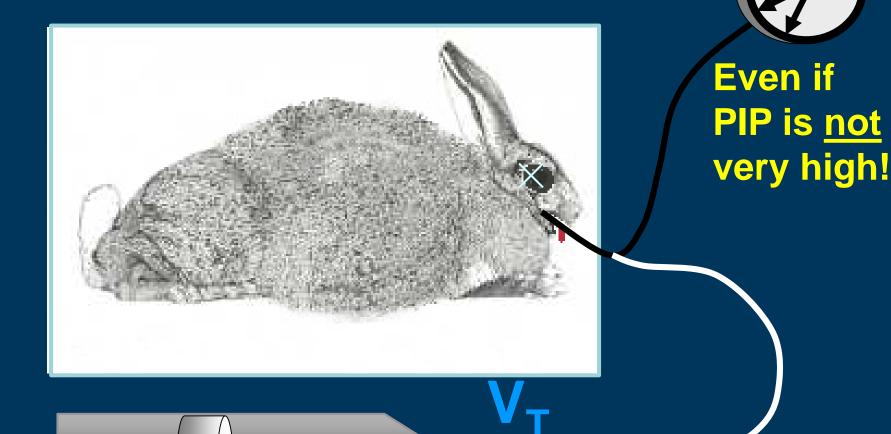

Ventilator-Induced Lung Injury

Atelectotrauma:

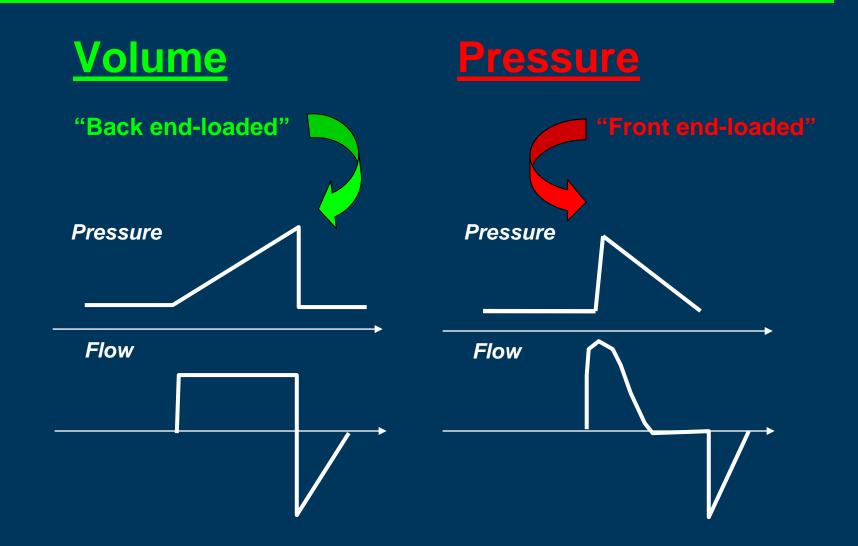
Repetitive alveolar opening and closing of under-recruited alveoli

Volutrauma:

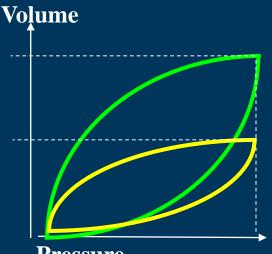

Over-distension of normally aerated alveoli from excessive volume delivery


Hernandez et al (1989) and Dreyfus et al (1998)

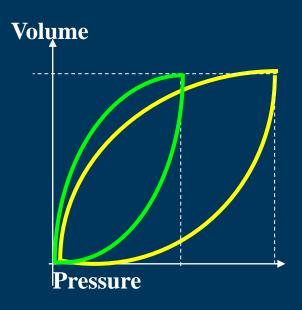
- Demonstrated severe acute lung injury occurred in small animals using large V_T
- When the chest cavity was bound and the lungs exposed to high pressures, the acute lung injury markers were much lower than the injury that ensued once the binding was removed
- Excessive V_T -and not high pressure- is primarily responsible for lung injury


A large V_T injected into a critter with a strapped chest doesn't hurt its lungs:

If one pushes in that same V_T without the strap, it causes the lungs to burst:



Volume vs. Pressure


Pressure vs. Volume (Control variables)

Pressure

Volume Targeted

Mortality

	VT۷	,	PLV	,		Risk Ratio	Risk Ratio	
Study or Subgroup					Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl	
1.1.1 Incidence of de	ath							
D'Angio CT2005	13	104	13	107	21.1%	1.03 [0.50, 2.11]	-+-	
Duman N2012	3	23	7	22	11.8%	0.41 [0.12, 1.39]	— •–	
Guven S2013	3	42	5	30	9.6%	0.43 [0.11, 1.66]		
Keszler M2004	1	9	1	9	1.6%	1.00 [0.07, 13.64]		
Lista G2004	5	30	6	23	11.2%	0.64 [0.22, 1.84]		
Liu CQ2011	2	31	3	30	5.0%	0.65 [0.12, 3.59]		
Nafday SM2005	2	16	1	18	1.5%	2.25 [0.22, 22.53]		
Piotrowski A2007	7	30	4	26	7.1%	1.52 [0.50, 4.60]	- !	
Piotrowski A1997	4	27	8	31	12.3%	0.57 [0.19, 1.70]		
Singh J2006	5	57	10	52	17.2%	0.46 [0.17, 1.25]		
Sinha SK1997	1	25	1	25	1.6%	1.00 [0.07, 15.12]		
Subtotal (95% CI)		394		373	100.0%	0.73 [0.51, 1.05]	•	
Total events	46		59					
Heterogeneity: Chi ² = 6.13, df =10 (P = 0.80); l ² = 0%								
Test for overall effect:	Z = 1.71	(P = 0.	09)					
						l 0.	01 0.1 1 10	
							Favours VTV Favours PLV	

Peng WS, et al. Arch Dis Child Fetal Neonatal Ed 2014;99:F158–F165

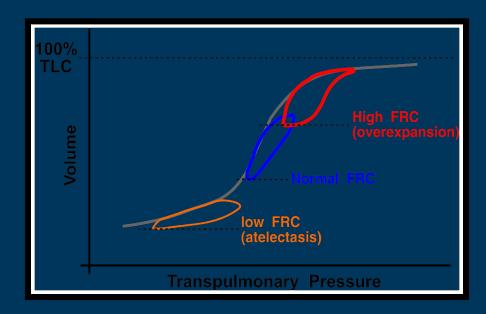
Incidence of BPD

	VTV	,	PLV	/		Risk Ratio	Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl		
1.2.1 Incidence of BP	'D								
D'Angio CT2005	27	93	32	92	35.0%	0.83 [0.55, 1.27]			
Duman N2012	3	23	7	22	7.8%	0.41 [0.12, 1.39]	— • -+		
Guven S2013	2	42	9	30	11.4%	0.16 [0.04, 0.68]			
Keszler M2004	2	9	5	9	5.4%	0.40 [0.10, 1.55]	- +		
Lista G2004	3	30	4	23	4.9%	0.57 [0.14, 2.32]	-		
Nafday SM2005	2	16	4	18	4.1%	0.56 [0.12, 2.67]			
Singh J2006	16	57	17	52	19.3%	0.86 [0.49, 1.52]			
Sinha SK1997	1	25	6	25	6.5%	0.17 [0.02, 1.29]			
Zhou XJ2007	2	15	5	15	5.4%	0.40 [0.09, 1.75]			
Subtotal (95% CI)		310		286	100.0%	0.61 [0.46, 0.82]	●		
Total events	58		89						
Heterogeneity: Chi ² = 9.37, df =8 (P = 0.31); l ² = 15%									
Test for overall effect: 2	Z = 3.36	(P = 0.	(8000						
I									
I						⊢ 0.0	01 0.1 1 10 100		
I							Favours VTV Favours PLV		

Peng WS, et al. Arch Dis Child Fetal Neonatal Ed 2014;99:F158–F165

Duration of Ventilation

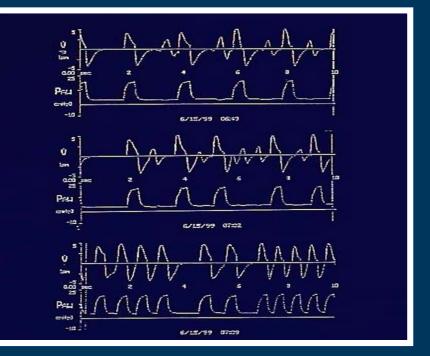
Study or Subgroup		VTV SD	Total	Mean	PLV SD	Total	Weight	Mean Difference IV, Random, 95% Cl	Mean Difference IV, Random, 95% CI
1.3.1 length of mec	hanica:	I venti	lation						
D'Angio CT2005	27.6	23.8	90	24	22.4	94	2.7%	3.60 [-3.08, 10.28]	+
Guven S2013	3.02	6.76	42	6.93	7.81	30	8.2%	-3.91 [-7.37, -0.45]	
Keszler M2004	4.5	7.3	8	15.6	18.4	8	0.7%	–11.10 [–24.82, 2.62]	
Lista G2004	8.8	3	30	12.3	3	23	19.8%	-3.50 [-5.13, -1.87]	-
Liu CQ2011	4.792	1.125	31	6.458	1.917	30	28.6%	-1.67 [-2.46, -0.87]	Ð
Piotrowski A1997	6.7	4.9	23	13	15	22	2.8%	-6.30 [-12.88, 0.28]	
Singh J2006	8.4	12.6	52	9.7	14	42	3.9%	-1.30 [-6.75, 4.15]	
Sinha SK1997	5.1	2.7	25	6.7	5.6	25	13.2%	-1.60 [-4.04, 0.84]	
Zhou XJ2007	9.3	2.1	15	9.8	2.3	15	20.3%	-0.50 [-2.08, 1.08]	.1
Subtotal (95% CI)			316			289	100.0%	-2.00 [-3.14, -0.86]	◆
Heterogeneity: Tau ² = 1.02; Chi ² =14.45, df = 8 (P = 0.07); l ² = 45%									
Test for overall effect: $Z = 3.44$ (P = 0.0006)									
								-	
									–20 –10 0 10 20


VTV reduced the incidence of BPD, duration of mechanical ventilation, failure of primarily assigned ventilatory mode, grades 3/4 IVH, PVL and air leaks

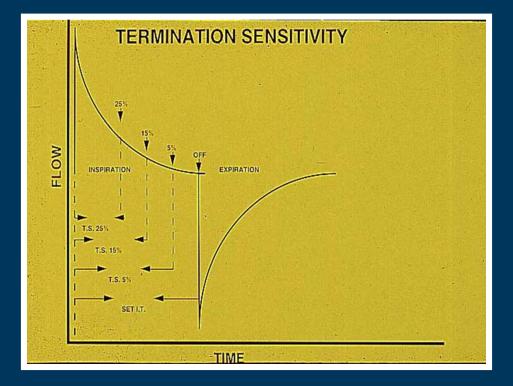
[Peng, IBID]

compared to PLV modes.

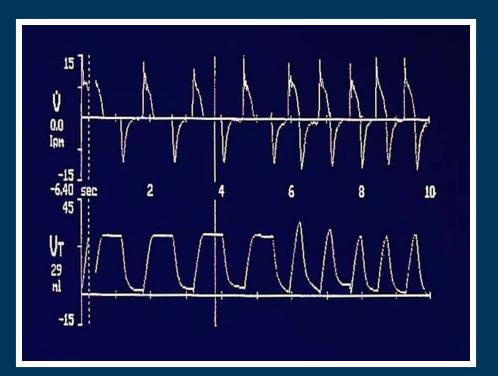
Volume Targeting


- Adjust pressure or volume to provide 4-7 mL/kg
- Avoid both hyperinflation and underinflation
- A happy baby will breathe at 40-60 bpm

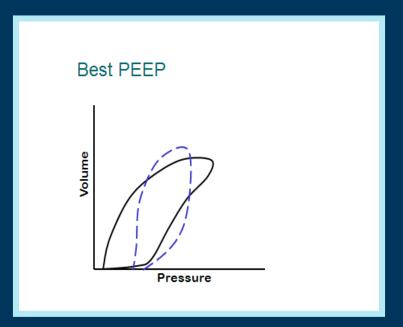
Mode


• IMV

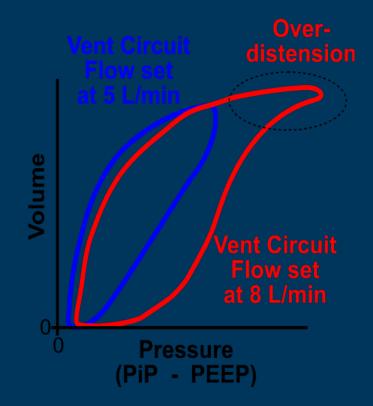
- SIMV
- Assist/Control


Cycling

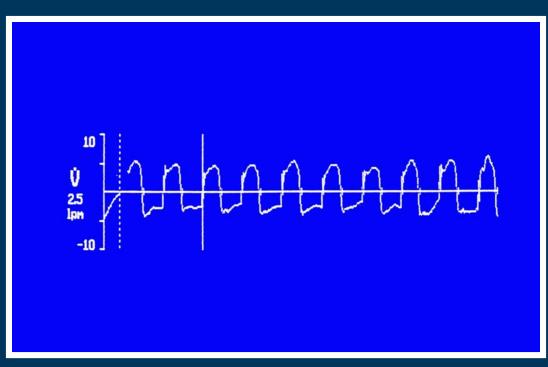
TimeFlow


Inspiratory Time

- Time Constant
- I:E ratio
- Gas trapping



- One size does not fit all
- Optimize inflation
- Find best compliance


Flow

- Avoid rheotrauma
- If too high
 - > Turbulence
 - Inadvertent PEEP
- If too low
 - Flow starvation
 - Inability to reach PIP or desired Vt



- Encourage spontaneous breathing
- Provide adequate safety net
- Follow minute ventilation, if possible

Trigger

 Set at lowest level that avoids autocycling

Oxygen Therapy: Can We Get It Right?

Introduction

Oxygen

An integral part of all respiratory support
One of the most commonly used drugs in the neonatal intensive care unit

Introduction

 Goal of Oxygen Therapy:
 To achieve adequate delivery of oxygen to the tissues without creating oxygen toxicity

The Controversy

- The recent trials of oxygen therapy suggest that lower SpO2 can reduce severe retinopathy of prematurity (ROP), but is associated with a higher mortality.
- Babies often display wide fluctuations in SpO2
- How can we better control both oxygen delivery and limit these fluctuations?

Closed-Loop Control of Oxygenation

Background

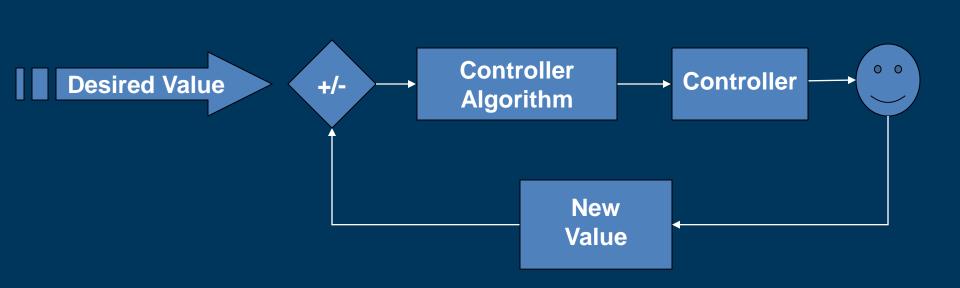
- Most preterm infants exhibit spontaneous fluctuations in SPO₂.
- Preterm infants often require supplemental oxygen, increasing risk of:
 - Retinopathy of prematurity
 - Lung injury
 - Oxidative stress injury
 - Necrotizing enterocolitis

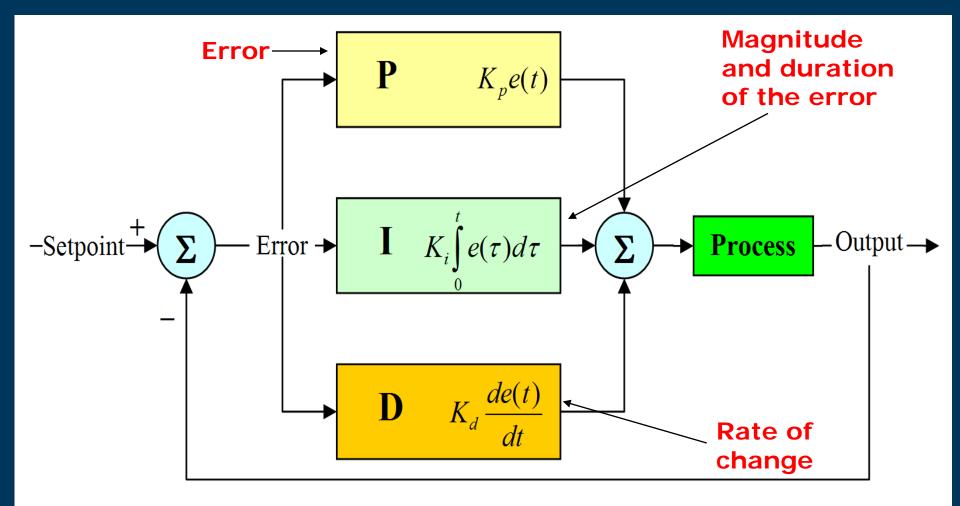
Background

- Delayed responses to these fluctuations result in hyperoxemic and hypoxemic episodes, as well as:
 - Increased risk of impaired oxygen delivery
 - Increased risk of ROP and chronic lung disease

Background

Only about 50% of the time, is SpO₂ within the desired range. >Laptook et al (J Perinatol 2006) • N=74, 1 center, 19 months • 27% below, 58% within, 15% above Hagadorn et al (Pediatrics 2006) • N=84, 14 centers (3 countries), 8 months 16% below, 48% within, 36% above


"The computer allows you to make mistakes faster than any other invention, with the possible exception of handguns and alcohol."



- Mitch Ratcliffe

Closed-Loop

Closed-Loop

Proportion – Integral - Derivative

Closed-Loop Control

Goal Minimize time out of target SpO₂ range, especially high SpO₂ Reduce modulation of SpO₂

Algorithm Goals

Normoxemia

- Minimize change in SPO₂
- Gradually wean FIO₂
- Hypoxemia
 - Rapidly increase FIO₂ to bring SPO₂ in bounds
 - Reduce FIO₂ as SpO₂ approaches target.
- Hyperoxemia
 - Minimize the further increase in SPO₂
 - Gradually wean FIO₂

CLiO₂ Pilot Trial Summary

- In ventilated infants with frequent episodes of hypoxemia, automated regulation of FiO₂ in comparison to routine care:
 - Increased time within intended SpO₂ range
 - Reduced severe hyper- and hypoxemia
 - Reduced the fraction of inspired O₂
 - Reduced manual interventions

Claure, et al, J Pediatr (2009) 155: 640-5

Automated Adjustment of Inspired Oxygen in Mechanically Ventilated Preterm Infants: A Multicenter Crossover Trial

N. Claure ¹, E. Bancalari ¹, C. D'Ugard ¹, L. Nelin ², M. Stein ², R. Ramanathan ³, R. Hernandez ³, S.M. Donn ⁴, M. Becker ⁴ and T. Bachman ⁵.

¹ University of Miami
 ² Ohio State University
 ³ University of Southern California
 ⁴ University of Michigan
 ⁵ California State University

Hypotheses

 In ventilated preterm infants with frequent fluctuations in oxygenation, automated FiO₂ adjustment is more effective than standard care in maintaining SpO₂ within the intended range <u>under</u> routine clinical conditions

Hypotheses

 Automated FiO₂ adjustment reduces severe hyper- and hypoxemia, supplemental O₂ and the number of manual FiO₂ adjustments

Objective

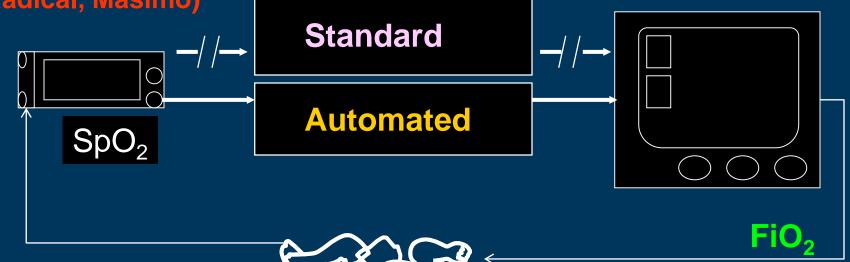
To evaluate the efficacy and safety of automated FiO₂ adjustment in maintaining SpO₂ within the intended range in preterm infants with frequent spontaneous episodes of hypoxemia in the standard clinical setting in a multicenter crossover trial

Study Approval

- Approved by the each institution's IRB
 Conducted under approval for use of the "Automated FiO₂ Adjustment Function" of the Avea infant ventilator as an investigational device by the US FDA (G060031/S009)
- Written informed parental consent

Eligibility

- Preterm infants on supplemental O₂ and mechanical ventilation
- Frequent spontaneous episodes of hypoxemia (SpO₂<80%, ≥ 4 episodes per 8 hrs., during previous 24 hrs.)
- Hemodynamically stable
- Absence of major congenital anomalies
- Absence of seizure activity
- Absence of ongoing sepsis or meningitis


Study Protocol

Two consecutive periods:

- 24 hrs. with FiO₂ adjusted routinely by clinical staff (Standard)
- 24 hrs. of automated FiO₂ adjustment (Automated)
- Sequence assigned by random blocks per center
- The intended SpO₂ range for both periods was 87 93%

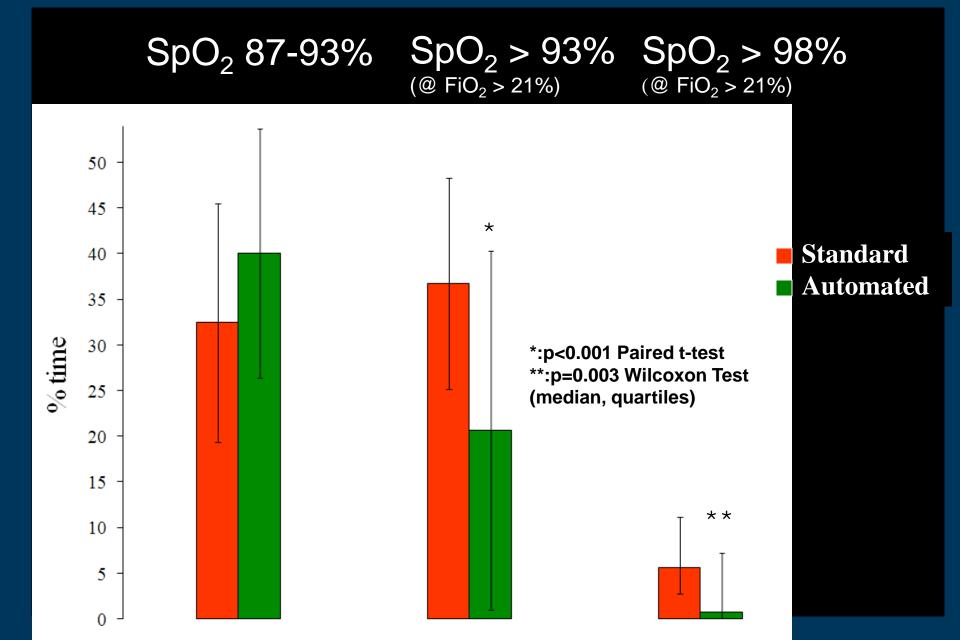
Pulse Oximeter (Radical, Masimo)

Infant ventilator (Avea, CareFusion)

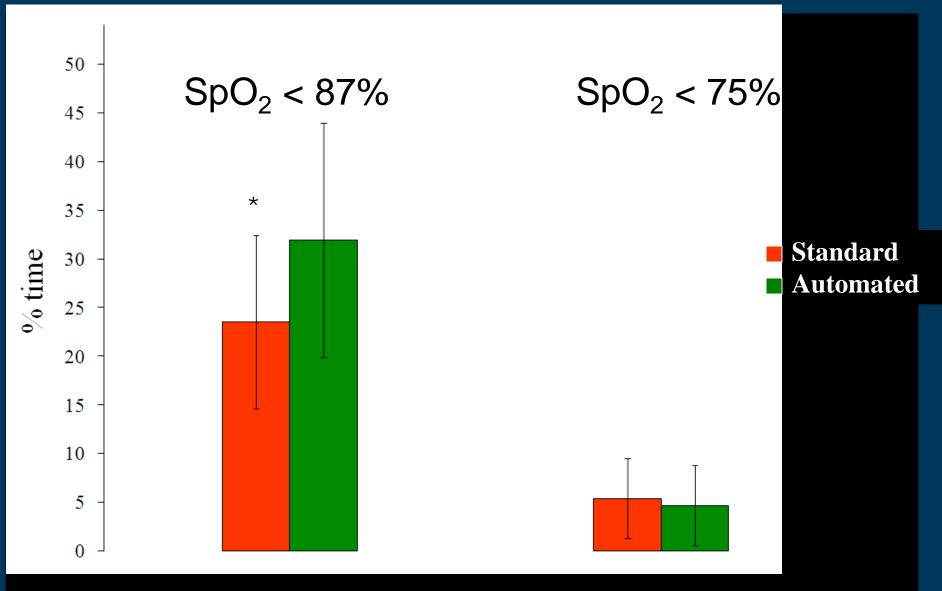
Automated FiO₂ function:


- FiO₂ is \uparrow or \downarrow step-wise if SpO₂ is < or > the intended range
- Magnitude and frequency of FiO₂ adjustments are determined by:
 - difference between SpO₂ and intended range
 - time outside range
 - trend in SpO₂
 - basal FiO₂
- Basal FiO₂ is adjusted gradually to keep SpO₂ within range

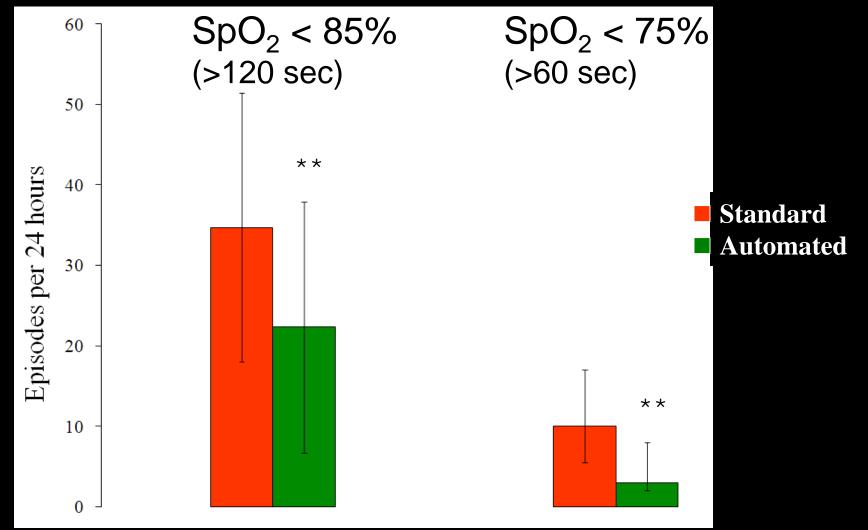
Study Population


Birth weight: Gestational age: Postnatal age: Rate: PIP: **PEEP: PSV:** FiO₂:

 $671 \pm 156 \text{ g}$ $25 \pm 2 w$ $26 \pm 15 d$ 27 ± 10 bpm $22 \pm 6 \text{ cm H}_2\text{O}$ $6 \pm 1 \text{ cm H}_2\text{O}$ $8 \pm 2 \text{ cm H}_2\text{O}$ 37 ± 11 %


Hourly Median SpO₂ and FiO₂

Time Within or Above Intended Range



Time Below Intended Range

*:p<0.001 Paired t-test (mean±SD)

Prolonged Episodes Below Intended Range

**:p=0.001 Wilcoxon Signed Rank Test (median and 25th – 75th percentile)

24 Hr Median FiO₂ and Manual Adjustments

Conclusions

These data from a group of preterm infants with frequent fluctuations in SpO₂, obtained under standard clinical conditions, showed that:

Automated FiO₂ adjustment

- improved maintenance of SpO₂ within the intended range
- reduced hyperoxemia, supplemental O_{2,} and staff workload

Conclusions

The increased number of mild episodes with SpO₂ below the intended range is likely related to FiO₂ weaning and avoidance of hyperoxemia.

Limitations

Automated FiO₂ should not be a substitute for more appropriate observations or interventions
 Automated FiO₂ may give an excessive sense of confidence and lead to reduce attentiveness

Limitations

- Automated FiO₂ is dependent on pulse oximetry accuracy
- Observed differences in this study may be relative to the effectiveness of standard care
- Physiologic consequences of different targeted SpO₂ ranges should be taken in consideration

WEANING INFANTS FROM MECHANICAL VENTILATION

The process of transferring the work of breathing from the ventilator to the baby.

Weaning- or at least the consideration to weanshould begin as soon as a baby is intubated.

 \mathbf{O}

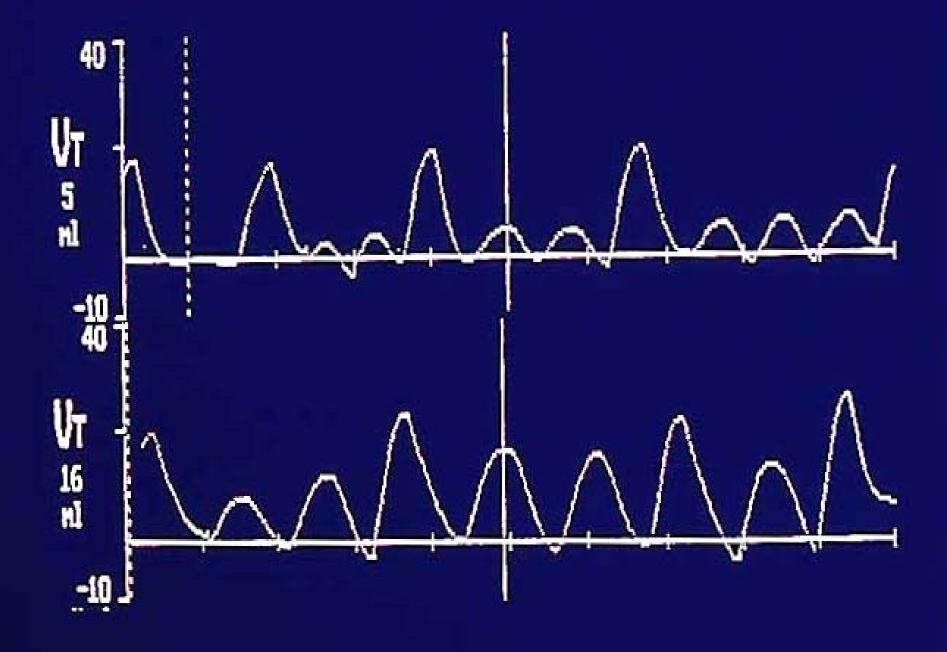
Weaning and Extubation

- Still largely determined by personal preferences
- Tends to be experiential or anecdotal
- Very little clinical data

Weaning is a Dynamic Process

- Changing disease and/or patient status
- Interaction between heart and lungs (e.g., PDA)
- Caloric intake vs. expenditure
- Relationship between central control of breathing and respiratory muscles

Physiologic Essentials for Extubation


- Reliable respiratory drive
- Neuromuscular competence
- Reduction in respiratory system load

Impediments to Successful Weaning

- Infection
- Neurologic dysfunction
- Neuromuscular incompetence
- Inadequate caloric intake
- Excessive fat/CHO intake

Impediments to Successful Weaning

- Electrolyte imbalance
- Metabolic alkalosis
- Congestive heart failure
- Anemia
- Pharmacologic agents

"The biggest reason for failure to wean is failure to wean."

