Beaumont

Approach to Diagnosis and Management of Interstitial Lung Disease: Changing Landscape

Girish B. Nair MD, FACP, FCCP

No Conflicts Of Interest

Objectives

1. Review the diagnostic approach to a patient with ILD

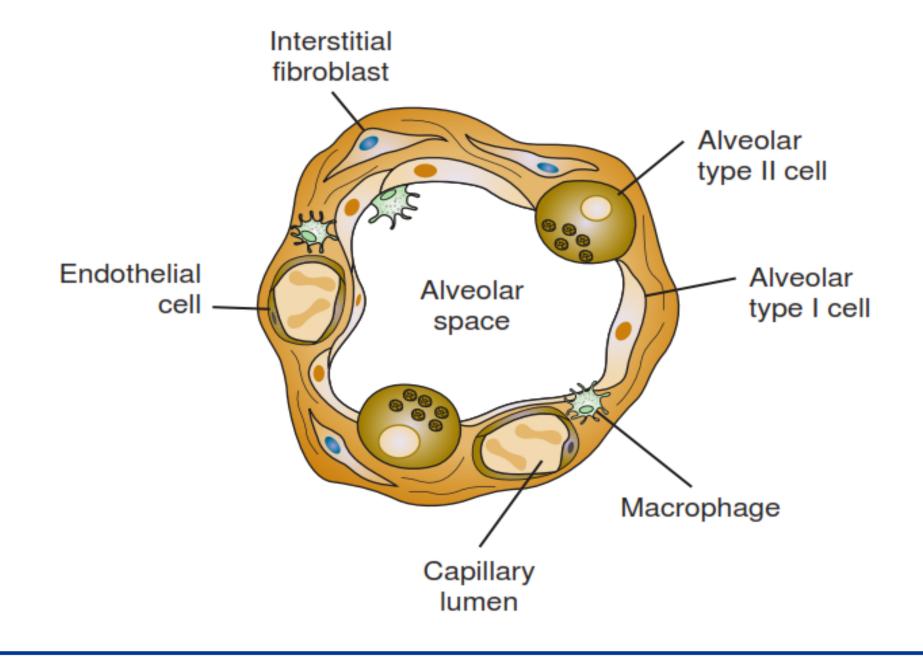
2. Identify the indications for surgical lung biopsy

3. Recognize the newer treatment options available for Idiopathic Pulmonary Fibrosis

f y o

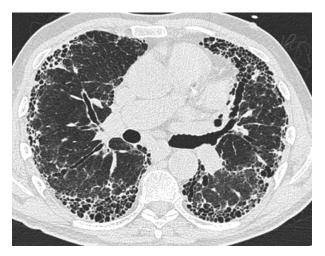
The mission of The FACES Foundation is to acknowledge and promote professional excellence in the education and care of patients with pulmonary illnesses.

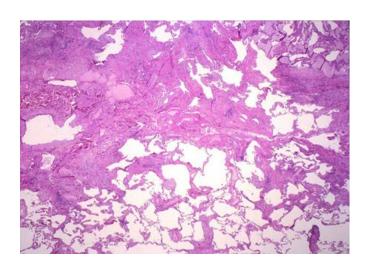
THE FACES FOUNDATION IS A 501(C)(3) NON-PROFIT ORGANIZATION
P.O. BOX 802, MILFORD, MI 48381
PHONE: 877-505-2075


Beaumont

PULMONARY FIBROSIS

(literally "scarring of the lungs")
is responsible for
40,000 deaths each year—
the same number
as breast cancer.


#Breathtember #ThoracicFact


Exposures

- Drugs
- Hypersensitivity pneumonitis – bird, molds
- Radiation
- Infections

Connective tissue <u>Diseases</u>

- Rheumatoid arthritis
- Lupus
- Scleroderma
- Sjogren's syndrome
- Mixed connective tissue disease

<u>Genetic</u>

• FPF

Idiopathic

- Sarcoidosis
- IIP

Interstitial Lung Diseases

ILD of Known Cause or Association

Idiopathic Interstitial Pneumonias Sarcoidosis & Other Granulomatous Diseases

Other

Medications

Radiation

Connective Tissue Disease

Vasculitis & DAH

Hypersensitivity Pneumonitis

Pneumoconioses

LAM

Pulmonary LCH

Eosinophilic Pneumonias

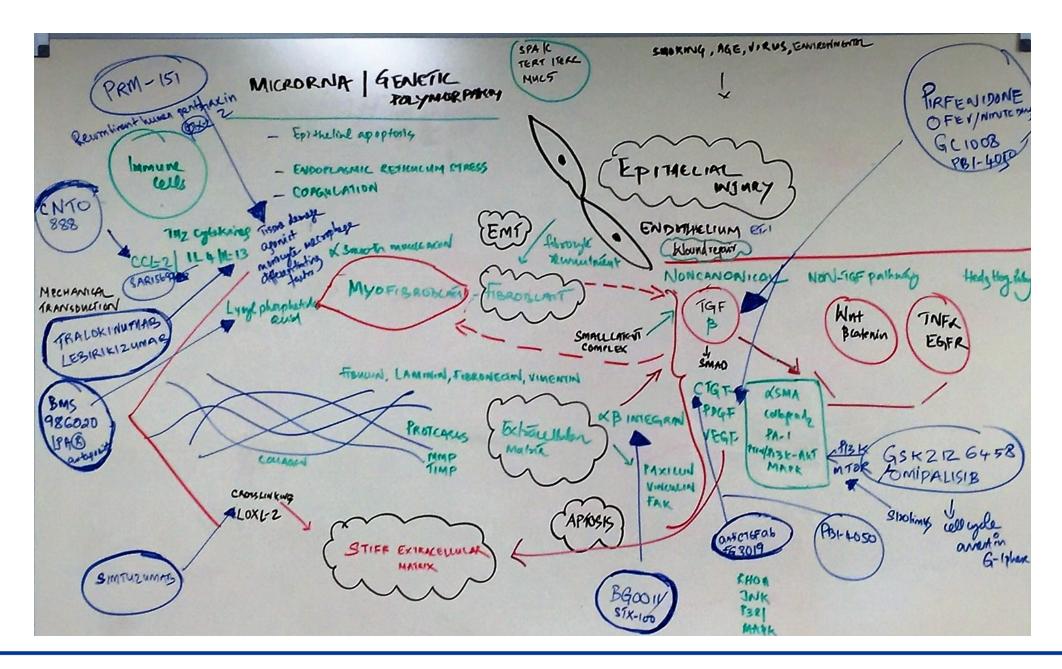
Alveolar Proteinosis

Genetic Syndromes

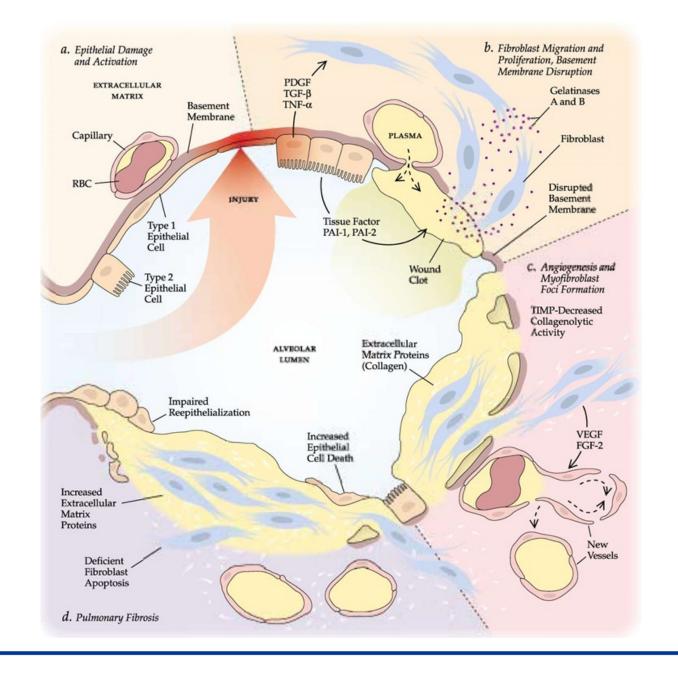
REVISED ATS/ERS CLASSIFICATION OF IDIOPATHIC INTERSTITIAL PNEUMONIAS: MULTIDISCIPLINARY DIAGNOSES

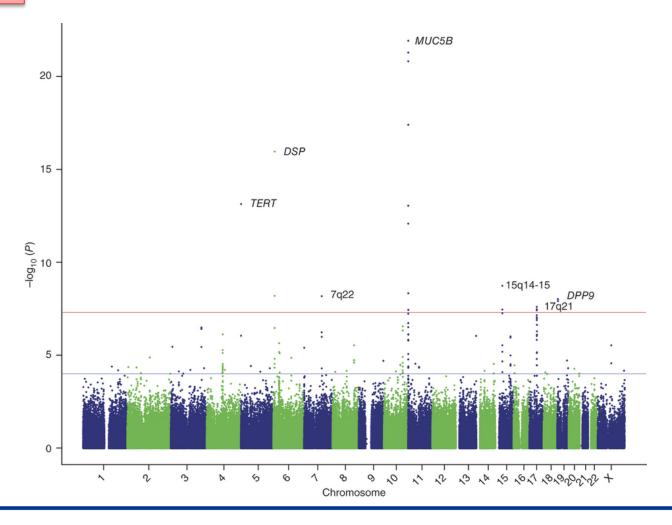
Major idiopathic interstitial pneumonias

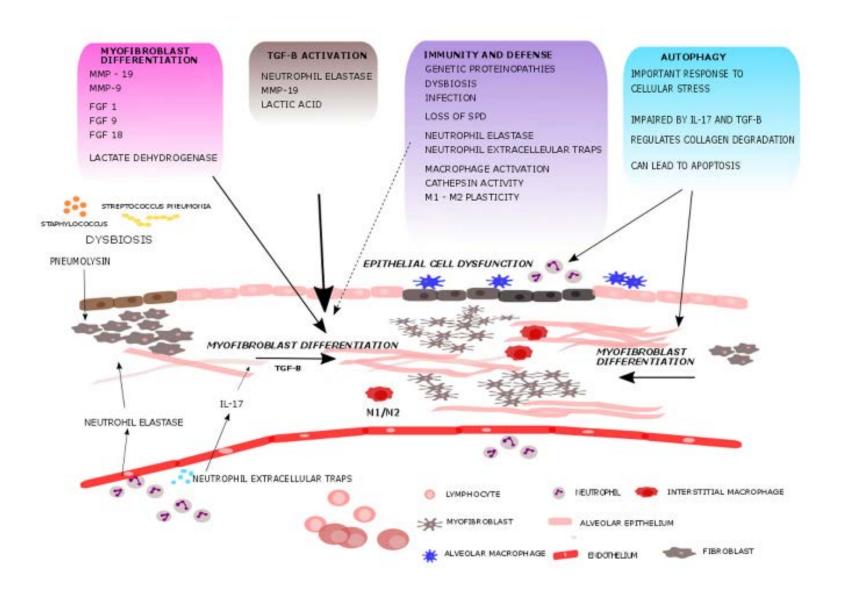
Idiopathic pulmonary fibrosis
Idiopathic nonspecific interstitial pneumonia
Respiratory bronchiolitis—interstitial lung disease
Desquamative interstitial pneumonia
Cryptogenic organizing pneumonia
Acute interstitial pneumonia

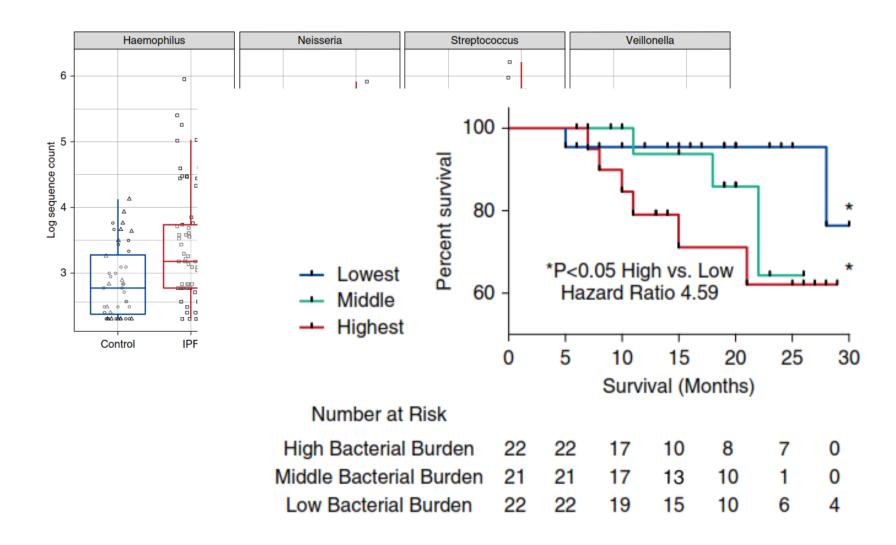

Rare idiopathic interstitial pneumonias

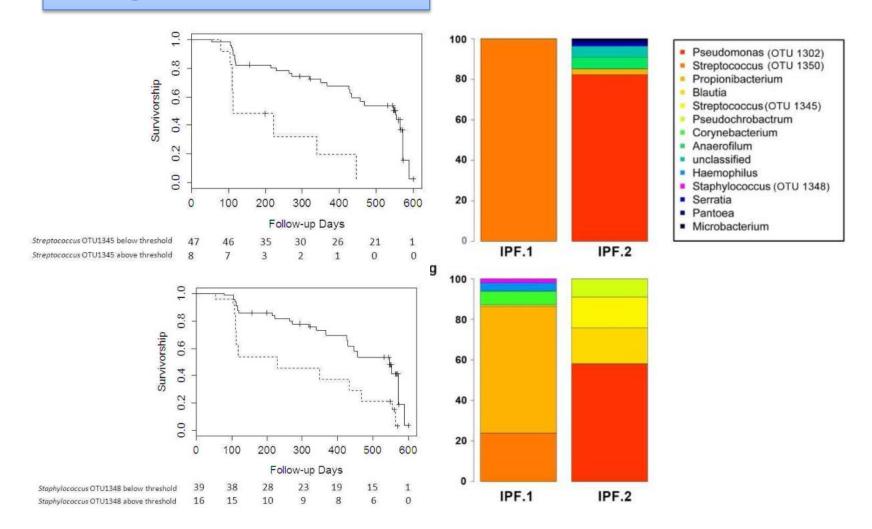
Idiopathic lymphoid interstitial pneumonia Idiopathic pleuroparenchymal fibroelastosis

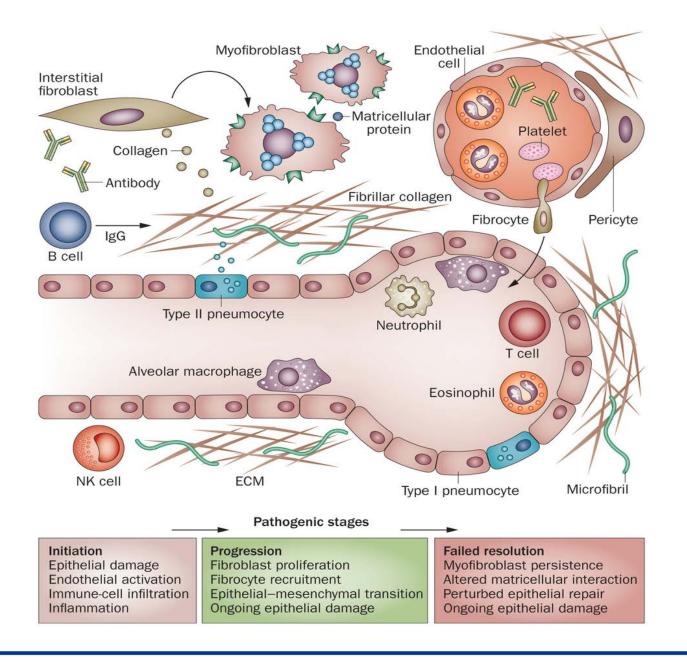

Unclassifiable idiopathic interstitial pneumonias*


Disease Mechanisms

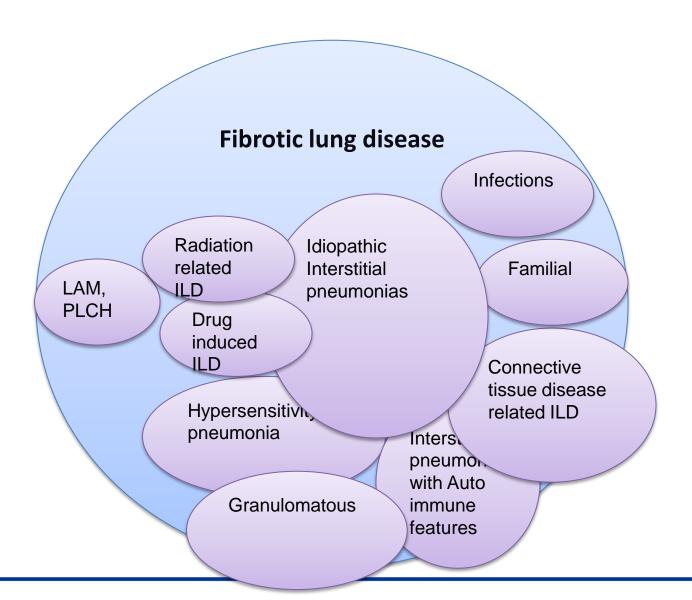

Beaumont

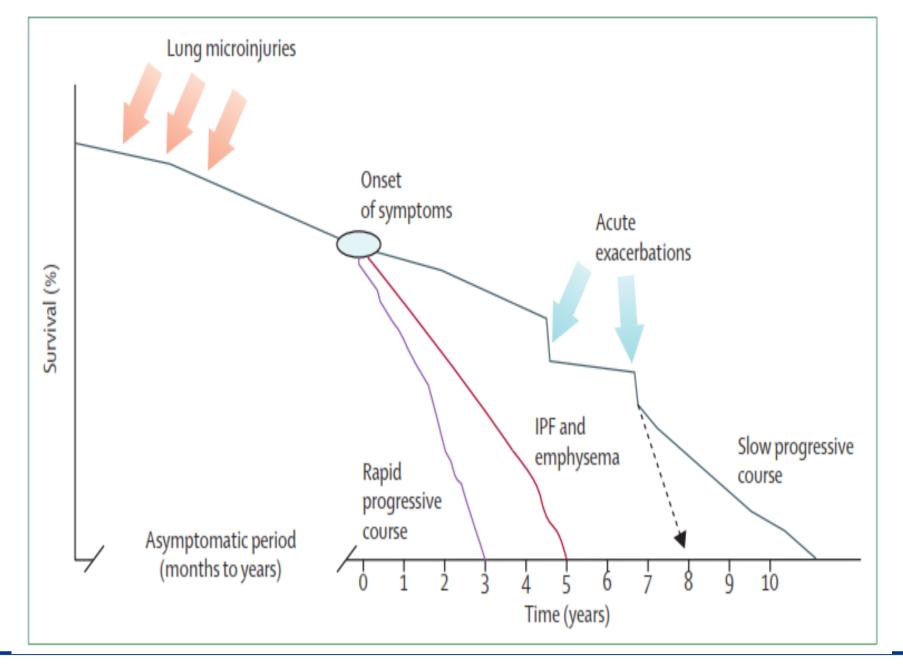

Genetics


Influences of Innate Immunity

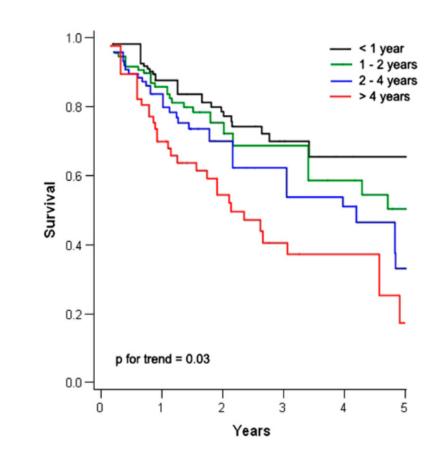


Role of Bacteria in the Pathogenesis and Progression of IPF


Lung Microbiome



Beaumont


Diagnosis

Delayed Access to subspecialty and Survival in IPF

- Prospective cohort study of 129 adults
- Onset of dyspnea to be seen at tertiary care center
- A longer delay was associated with an increased risk of death independent of age, sex, forced vital capacity, third-party payer, and educational attainment

Interstitial Lung Disease

- Clinical context
- Tempo or evolution of the disease
- Radiographic pattern

Clinical presentation

- 'I am feeling tired than usual'
- 'I used to walk several blocks but can't anymore'
- 'Have this dry cough'
- Examination may show clubbing and inspiratory bibasilar "velcro-like" crackles on auscultation

Physical Examination

Symmetry

Swan Neck Deformity

Mixed Connective Tissue Disease Puffy hands (polyarthritis) Raynaud's phenomenon Low blood counts Myositis- muscle disease

Sjogren's Syndrome
Dry Eyes
Dry Mouth
salivary/parotid swelling

Scleroderma
Skin thickening
Joint and tendon contractures
Raynaud's
Distal skin thickening
Calcinosis
Telangiectasia

Polymyositis/Dermatomyositis Symmetric, proximal muscle weakness Dermatologic findings

Heliotrope rash

Gottren's papules

Calcinosis cutis

Shawl sign

Beaumont

Serological Evaluation

- Performed before surgical biopsy
- 1 step: ANA, RF, CCP, ESR, CRP, Hypersensitivity pneumonitis panel
- Based on history & physical exam:
 - ✓ Extractable nuclear antigen (ENA) autoantibody panel
 - ✓ Anti-centromere antibody
 - ✓ MPO/PR3 (ANCA) antibodies
 - ✓ Anti-cardiolipin antibodies, lupus anticoagulant
 - ✓ Creatine kinase, aldolase

Pulmonary Function study Six minute walk test Echocardiogram

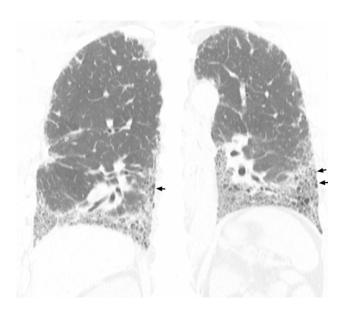
UIP Pattern

Inconsistent with UIP Pattern – Any of the 7 features

Upper or mid-lung predominance

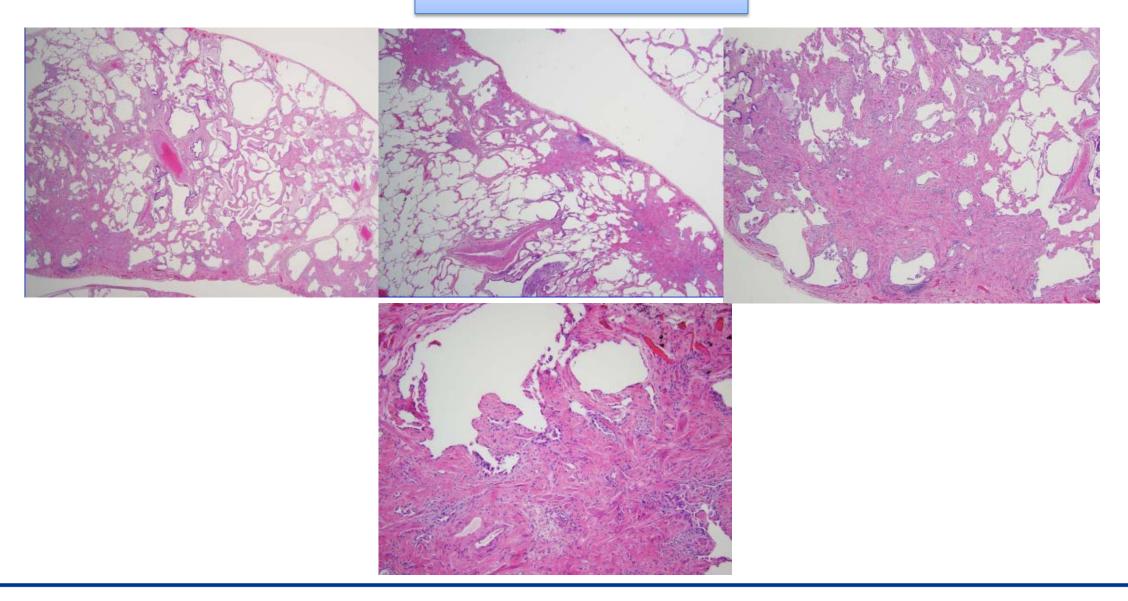
Peribronchovascular predominance

Extensive ground glass abnormality (extent > reticular abnormality)


Profuse micronodules (bilateral, predominantly upper lobes)
Discrete cysts (multiple, bilateral, away from areas of

biscrete cysts (multiple, bilateral, away from areas of

honeycombing

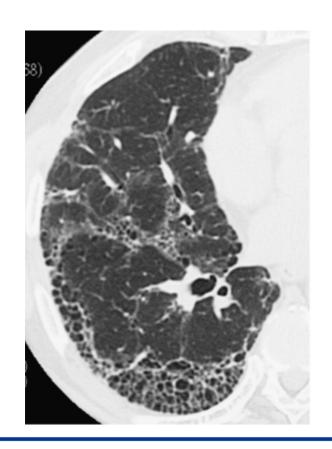

Diffuse mosaic attenuation/air-trapping (bilateral, in three or more lobes)

Consolidation in bronchopulmonary segment(s)/lobe(s)

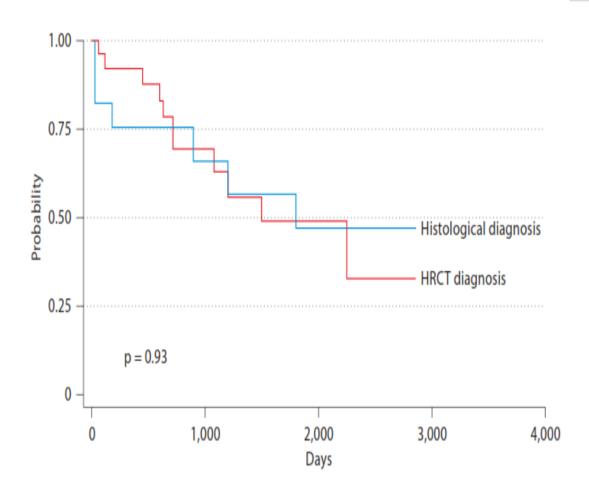
UIP Pattern

NSIP Pattern

Honeycombing in UIP


Present in 70-80% of cases of UIP

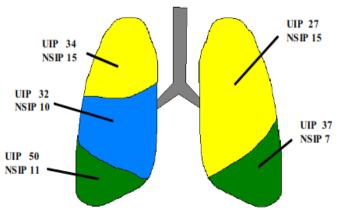
Strongest indicator of UIP on CT

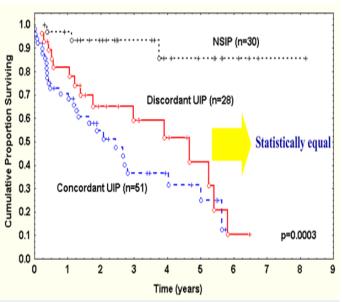

Median survival

UIP with honeycombing: 2.1 years UIP without honeycombing: 5.8 years

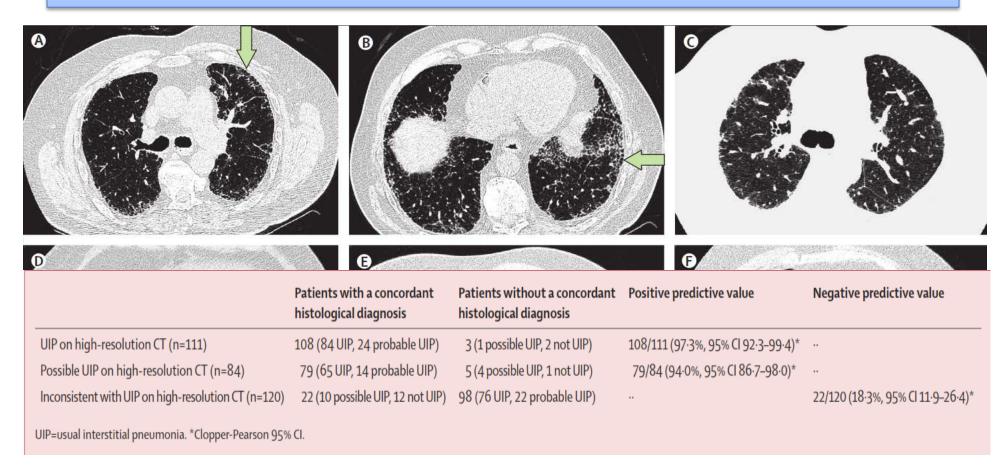
Hunninghake GW, et al. Chest 2003;124:1215-1223. Elliot TL. J Comput Assist Tomogr 2005;29:339-345. Flaherty KR, et al. Thorax 2003;58:143-148.

Mortality HRCT diagnosis compared to surgical lung biopsy diagnosis of UIP

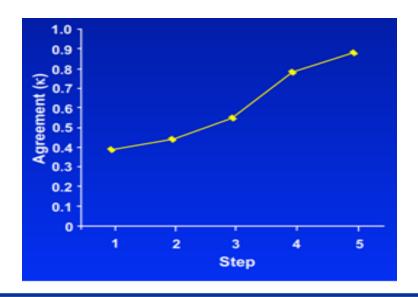



5-year survival in months histological vs. radiological diagnosis

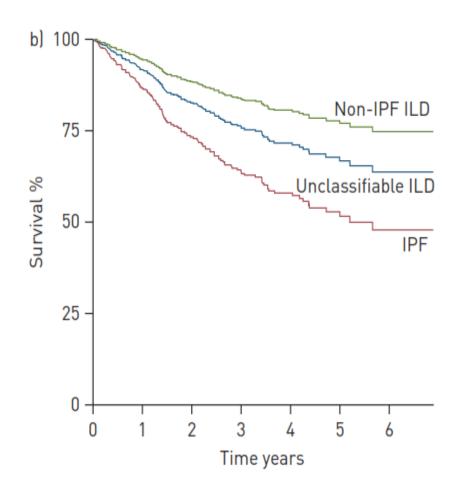
45.4 vs. 34.6%; p = 0.799

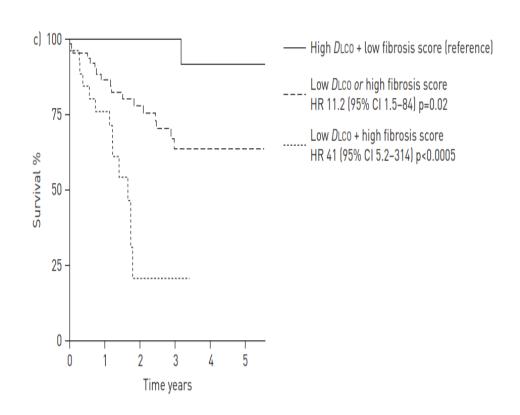

Surgical biopsy – it is important to sample multiple lobes

- SLBs from 168 patients
- 109 patients multiple lobes biopsied
- Reviewed by three pathologists
- Significant intrapatient heterogeneity
- Prognosis in patients with at least one lobe positive for UIP worse compared to non-UIP pattern

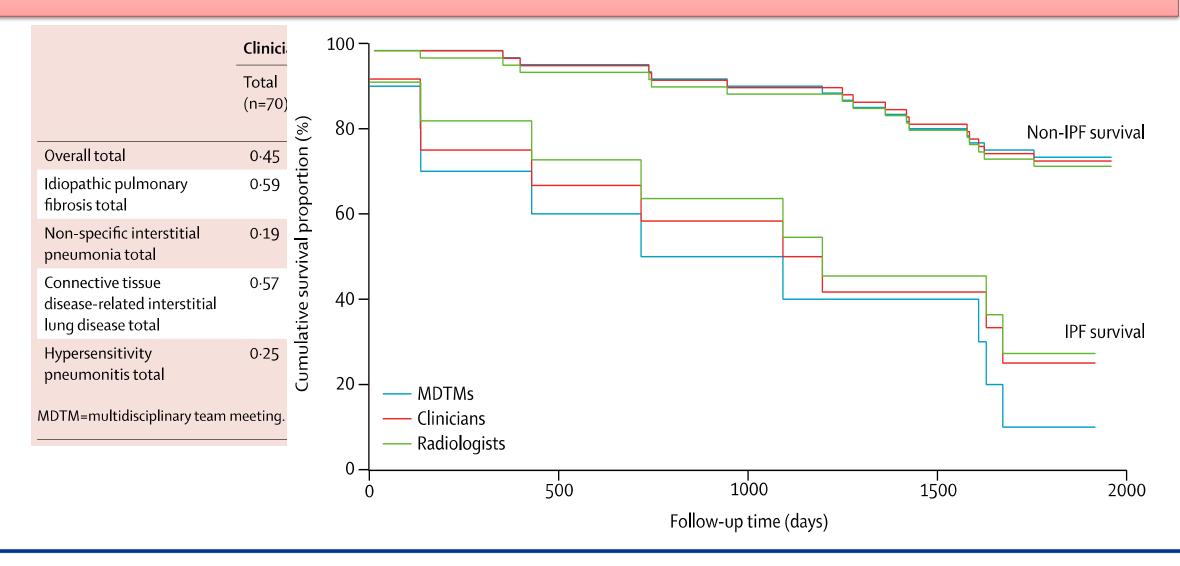

Diagnosis of idiopathic pulmonary fibrosis with high-resolution CT in patients with little or no radiological evidence of honeycombing

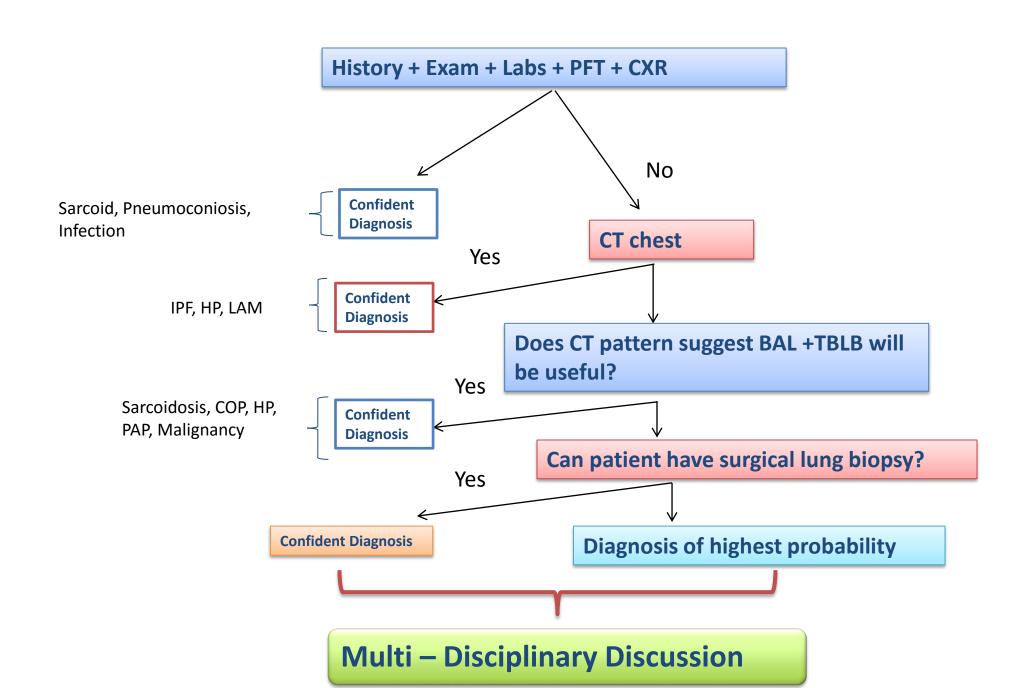
Multidisciplinary approach To IIP Diagnosis


- 58 suspected IIP
- 3 clinicians, 2 radiologists, 2 pathologists
- Information in sequential manner
- Clinicians identified 75% and radiologists 48% of IPF prior to histopathologic information was provided
- Dynamic interactions between specialists improve inter-observer agreement and diagnostic confidence


Information Provided	Participants	Output
Step 1 - Individual	Clinicians Radiologists	Diagnosis & Confidence Confidence of IPF
Step 2 - Individual HRCT + Standardized clinical data	Clinicians Radiologists	Diagnosis & Confidence Confidence of IPF
Step 3 - Group Discussion HRCT + Standardized clinical data	Clinicians Radiologists	Diagnosis & Confidence Confidence of IPF
Step 4 - Group Discussion HRCT + Standardized clinical data + SLB	Clinicians Radiologists Pathologists	Diagnosis & Confidence Confidence of IPF
Step 5 - Group Discussion HRCT + Standardized clinical data + SLH	Clinicians Radiologists Pathologists	Consensus Diagnosis & Confidence

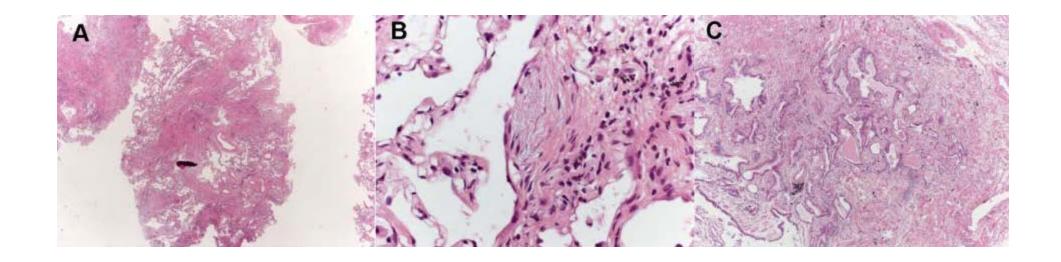
Unclassifiable Idiopathic Interstitial Pneumonia

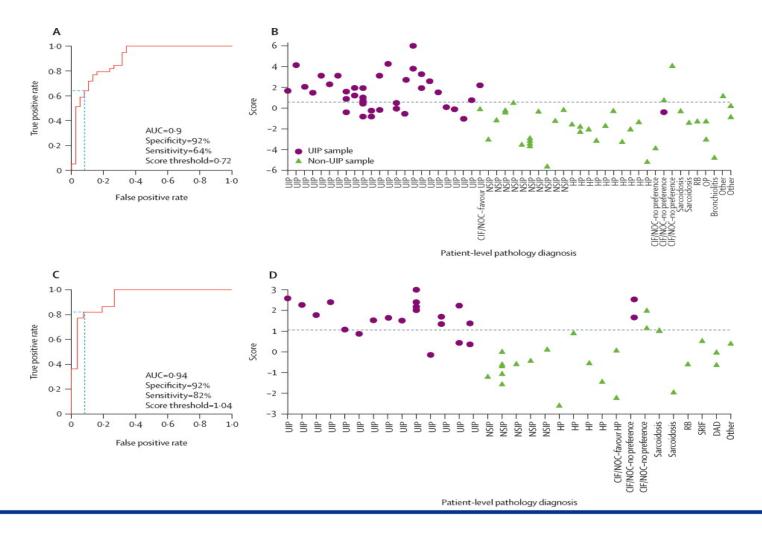




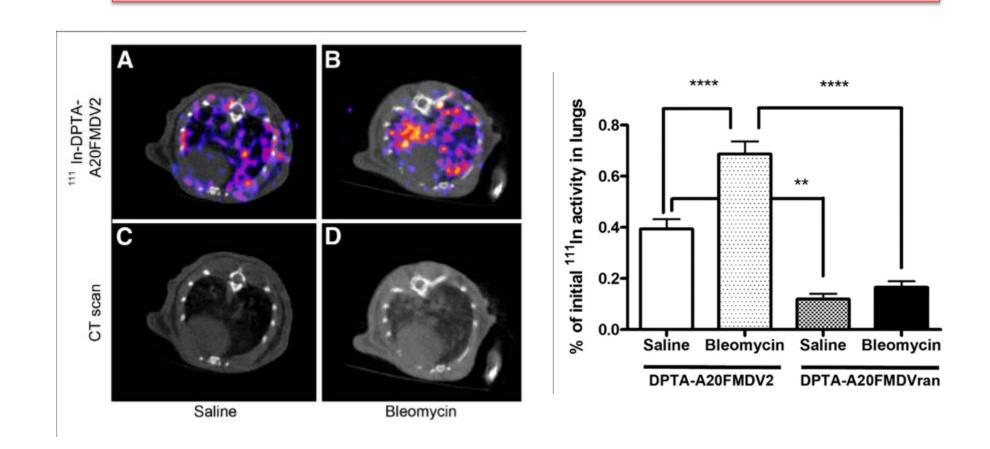
IPAF Interstitial Pneumonitis with Autoimmune Features

- 1) ILD by HRCT or Lung Bx
- 2) Other etiologies for ILD excluded
- 3) Does not meet criteria for AI Dz
- 4) 1 feature from @ least 2/3 Domains
 - Clinical
 - Serologic
 - Morphologic (HRCT or Lung Bx)


Multicenter Evaluation of Multidisciplinary Meeting

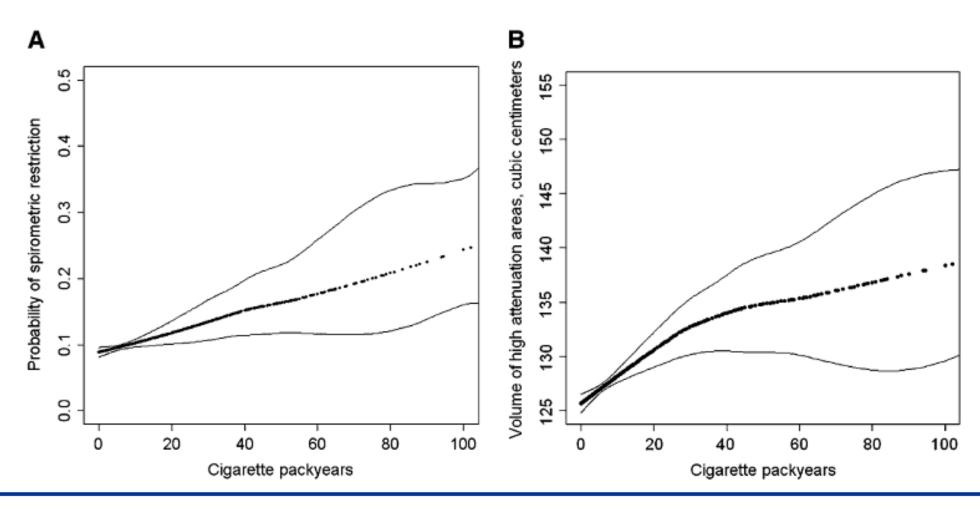


Newer Modalities of Diagnosis


Trans-bronchial Lung Cryobiopsy

Differentiating UIP based on Transcriptional Data

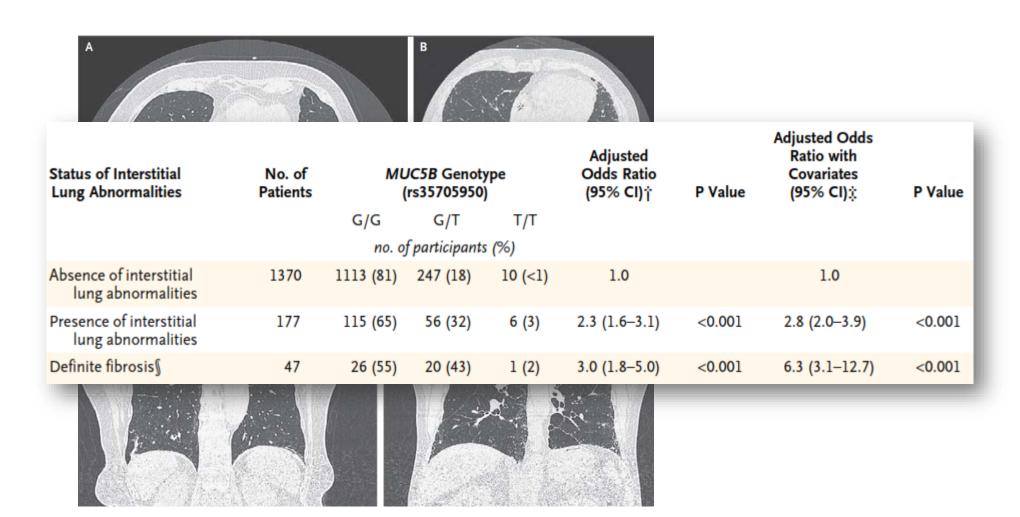
SPECT/CT Imaging using Integrins


Noninvasive Imaging of Experimental Lung Fibrosis

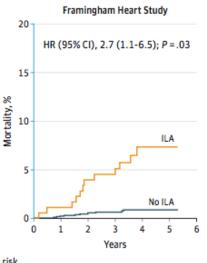
Mic		Modal	ity	
Pro Feature	Micro-CT	MRI	Nuclear Medicine Imaging (PET/SPECT)	Bimodality Imaging (PET/CT, SPECT/CT)
Spatial resolution Y SD lung assessment Assessment of lung structure,	Excellent (up to 1 μm) Yes Structure	Good (up to 25–100 μm) Yes Structure and function	Poor (∼1 mm) Yes Molecular mechanisms	Excellent Yes Molecular mechanisms and structure
Res function, and/or molecular mechanisms PET Potential for distinguishing lung inflammation	No	Yes	Yes (with specific molecular tracers)	Yes (with specific molecular tracers)
versus fibrosis Acquisition time Ionizing radiation Cost	Fast (minutes) Yes Less expensive (\$200,000–\$400,000)	Slow (minutes to hours) No Most expensive (∼\$2,000,000)	Fast (minutes) Yes Expensive (<\$1,000,000)	Fast Yes Expensive

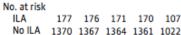
Early Diagnosis

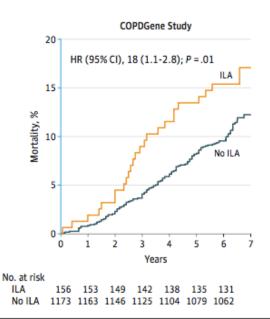
HIGH ATTENUATION ON CT – SMOKING & RESTRICTION ON SPIROMETRY

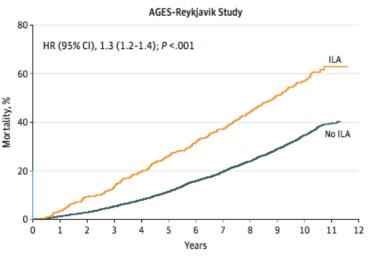

	Percent or Median/Means Where Appropriate and Noted						
	Research Subjects with ILA						
Variable	MESA*	Nagano, Japan [†]	COPDGene [‡]	MILD§	FHS	NLST ¹	Patients with IPF**
Prevalence of ILA, %	2	3	8	4	7	10	0.01–0.04
Radiologic features, %							
Reticular markings	4–9	62	85	21	97	24	All
Ground glass	61-93	15	97	90	100	78	Occasional
Centrilobular nodules	_	_	28	28	20		Rare
Cysts	_	_	51	_	47	27	Rare
Traction bronchiectasis	_	_	30	21	50		Common
Honeycombing	2-13	9	9	7	3	10	Common
High-attenuation areas in >10%	100% (by	_	_	_	_		Unknown (but likely elevate
of the lung	definition)						
Demographic parameters	•						
Age, yr	_	62	64	60	70	62	66
Sex, female, %	_	26	50	14	52	28	41–49
History of smoking, current or	_	70	100	100	62	100	60–72
former, %							
Respiratory symptoms, %							
Chronic cough, yes	_	13	41	_	12	_	73–86
Chronic shortness of breath, yes	_	15	60	_	18	_	Present in most patients
Physical examination findings							-
Fine crackles, %	_	26	_	_	_	_	Present in most patients
Pulmonary physiologic testing							-
FVC % predicted	_	113–116	88	101	101	_	68–89
Total lung capacity % predicted	_	_	95	_	79	_	46–78
Diffusion capacity of carbon	_		_	_	86	_	46–61
monoxide, % predicted							
6-min walk distance, m	_	555-573	403	_	_	_	373–392
Radiologic progression, %, follow-up	time						
Improvement	_	16, 4 yr	_	0, 3 yr	_	33, 2 yr	The median survival of IPF
Unchanged		40, 4 yr		75, 3 yr		47, 2 yr	
Overall progression	_	46, 4 yr	_	25, 3 yr	_	20, 2 yr	
Progression to UIP pattern	_	5, 4 yr	_	8, 3 yr	_		_

Early Diagnosis

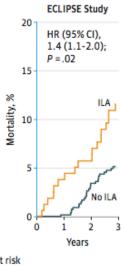

		F	Findings at 2-year Fo	ollow-up
Parameter	No.	Improved	Same	Progression
Overall extent of abnormality*		26 (32.9)	37 (46.8)	16 (20.3)
Nonfibrotic ILA	47	23 (48.9)	19 (40.2)	5 (10.9)
Fibrotic ILA	19	0	12 (63.2)	7 (36.8)
Mixed nonfibrotic and fibrotic ILA	13	3 (23.1)	6 (46.2)	4 (30.7)
Individual CT findings				
Nonfibrotic ILA				
GGO	32	13 (40.6)	9 (28.1)	10 (31.3)
Mosaic attenuation	40	0	37 (92.5)	3 (7.5)
Consolidation	9	2 (22.3)	7 (66.7)	0
Mixed nonfibrotic and fibrotic ILA				
GGO	5	3 (60)	0	2 (40)
Mosaic attenuation	4	0	4 (100)	0
Consolidation	1	0	1 (100)	0
GGO with reticular abnormality	7	0	4 (57.1)	3 (42.9)
Pure reticular abnormality	2	0	2 (100)	0
Honeycombing	5	0	5 (100)	0
Fibrotic ILA				
GGO with reticular abnormality	12	0	5 (41.7)	7 (58.3)
Pure reticular abnormality	9	0	5 (55.6)	4 (44.4)
Honeycombing	9	0	5 (55.6)	4 (44.4)

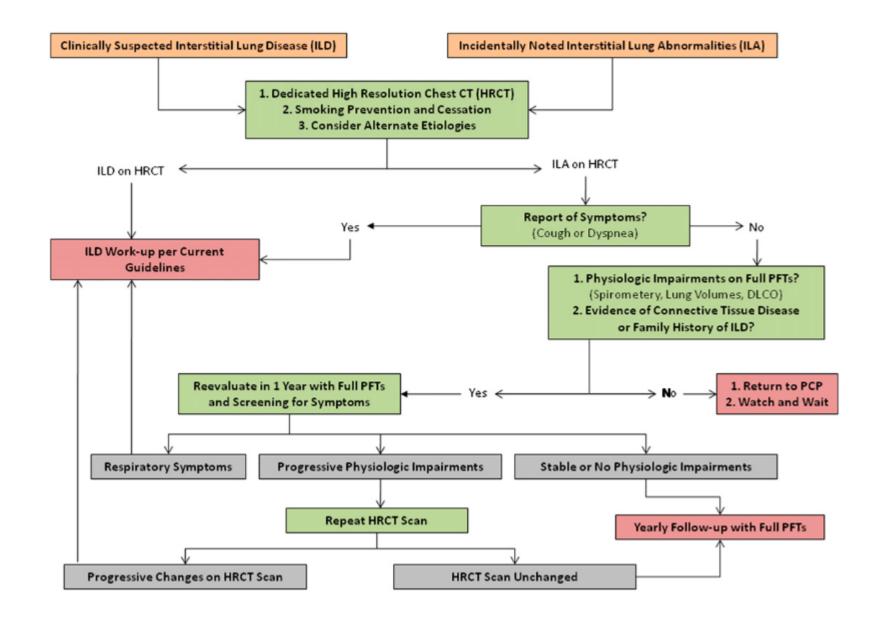

- CT scan of 884 smokers lung cancer screening
- ILA 9.7%- 2.1% fibrotic,5.9% non fibrotic
- 2 years non-fibrotic ILA improved 48.9%, while fibrotic did not improved in anyone and progressed in 36.8%.


Interstitial Lung Abnormalities and MUC5B Genotype in the Framingham Heart Study



Association Between ILA and All-Cause Mortality

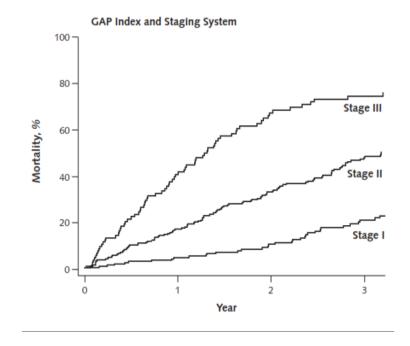




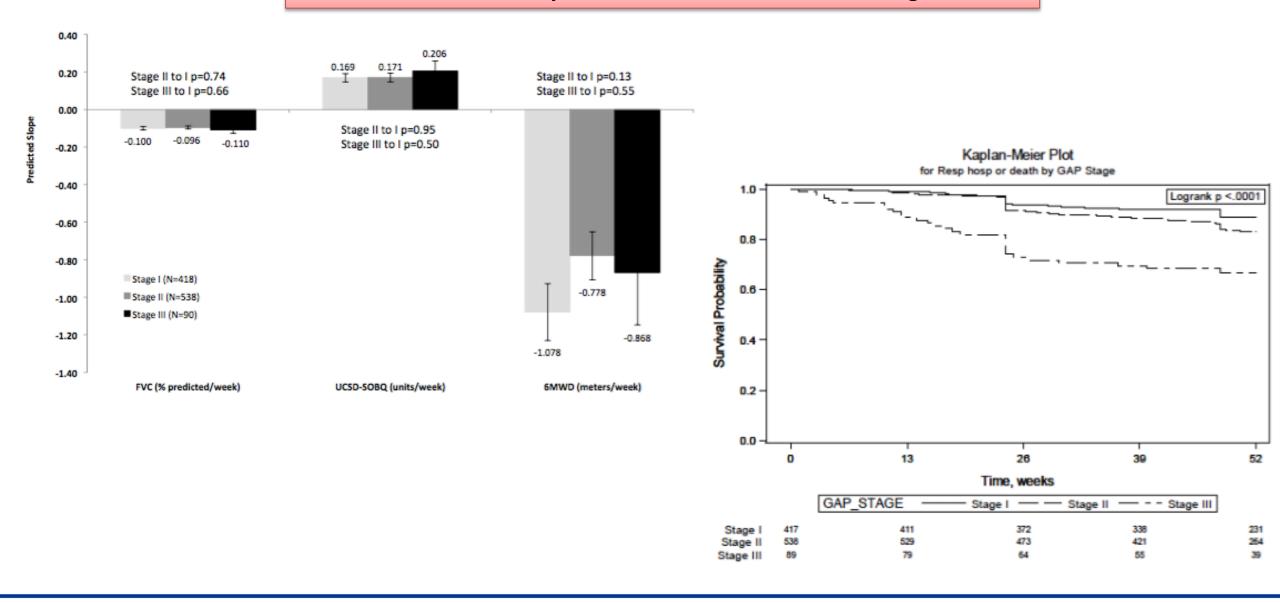
No. at risk ILA 378 365 343 328 304 281 259 239 213 137 68 12 No ILA 3216 3177 3124 3044 2956 2851 2710 2589 2447 1694 862 228

No. at risk ILA 156 151 145 No ILA 528 525 505

Disease Predictors

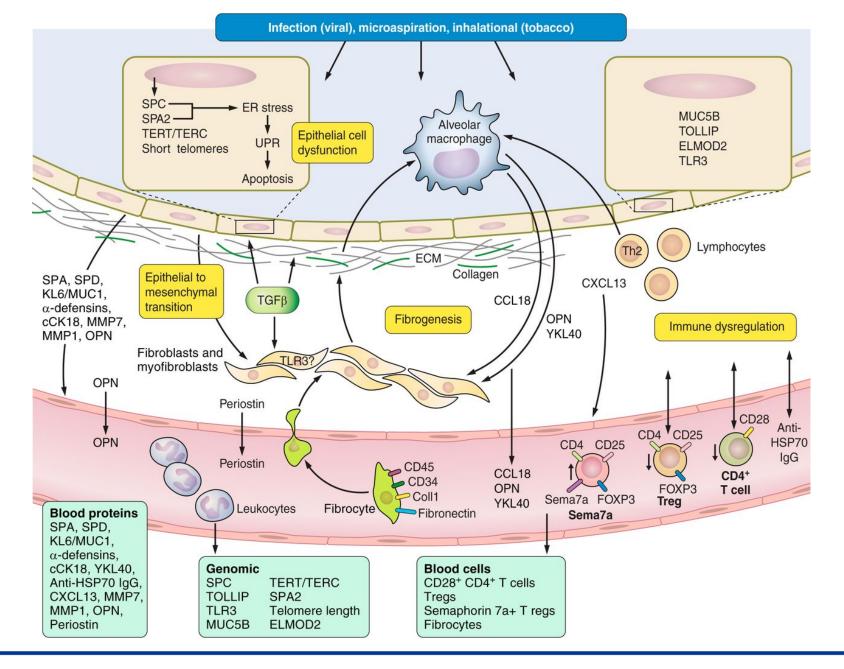

IPF – Predictors of Survival

Clinical Predictors	Radiographic Predictors	Physiologic Predictors	Pathologic Predictors	Biomarker Predictors
Demographic	HRCT	Pulmonary function tests	Histopathology	Blood
Age	UIP pattern	FVC	UIP pattern	BNP
Sex	Extent of fibrosis	TLC	Fibroblastic foci	Albumin
Ethnicity		Di _{CO}		KL-6M
Smoking status		CPI		MP-7
Symptom-based		Change in FVC		CCL-18
Dyspnea scores		Change in DLCO		SP-A & -D
• •				Circulating fibrocytes
Physical examination		Exercise tests		BAL
Clubbing		6MWT		SP-A & -D
BMI		Desaturation		MMP-3, -7, -8, -9
Comorbidities		Distance		CCL-2, -17, -22
Emphysema		Heart rate recovery		Neutrophilia
Pulmonary hypertension		Others		,
, ,,		15-step test		
		4-min step test		


Definition of abbreviations: BAL = bronchoalveolar lavage; BMI = body mass index; BNP = b-type natriuretic peptide; CCL = CC-chemokine; CPI = composite physiologic index; DLCO = diffusing capacity of carbon monoxide; HRCT = high-resolution computed tomography; KL = Krebs von den Lungen; MMP = matrix metalloproteinase; 6MWT = 6-minute walk test; SP = surfactant protein; UIP = usual interstitial pneumonia.

GAP Index

	Predictor						
G	Gender Female Male	0 1					
Α	Age, y ≤60 61–65 >65	0 1 2					
P	Physiology FVC, % predict >75 50–75 <50 DLCO, % predict >55 36–55 ≤35 Cannot perfe	0 1 2 0 1 2 3					
	Total Possible Po	ints	8				
Stage	I	Ш	Ш				
Points	0–3	6–8					
Mortality 1-y 2-y 3-y	5.6 10.9 16.3	39.2 62.1 76.8					


Predictors of Mortality are Poor Predictors of Disease Progression

Personalized Medicine

Biomarker

- Identify patients at risk of progression
- More accurate and less invasive diagnostic tool
- Response to treatment
- Prediction of disease outcome

BIOMARKERS FOR OUTCOME IN BLOOD AND BRONCHOALVEOLAR LAVAGE -HIGHER LEVELS PREDICTING POOR SURVIVAL

Alveolar Epithelial Cell Dysfunction

Surfactant Proteins

Krebs Von Den Lungen-6/Mucin 1

MUC5B

Telomeres

Caspase-Cleaved Cytokeratin-18

Immune Dysregulation

Innate Immunity

Toll-like Receptor 3

Toll-Interacting Protein

Alveolar Macrophage Activation

CC Chemokine Ligand 18

S100A12

Adaptive Immunity

Anti-HSP70 Antibodies

C-X-C Motif Chemokine 13

Costimulatory Signal During T Cell Activation

Semaphorin 7a

Microbiome

Extracellular Matrix Remodeling and Fibroproliferation

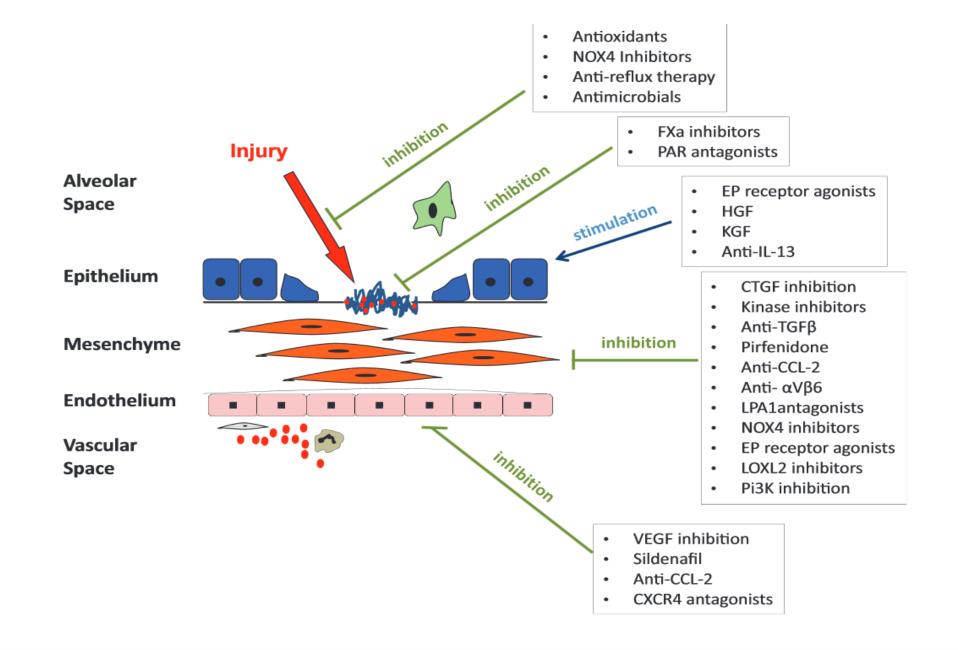
Matrix Metalloproteinases

Matrix Metalloproteinase-Degraded

Extracellular Matrix Proteins

Lysyl Oxidase-like Protein-2

Epigenetic Markers


Metabolomics

MMP-7, KL-6 and SP-A as Predictors of Outcome

Models	C-index	95% CI	P value
MMP-7	0.596	0.537-0.667	
KL-6	0.585	0.537-0.647	
SP-A	0.642	0.558-0.722	
SP-D	0.582	0.508-0.662	
MMP-7 and SP-A	0.681	0.611-0.766	
KL-6 and MMP-7	0.635	0.579-1.714	
KL-6, MMP-7, and SP-A	0.688	0.626-0.772	
Clinical variables ^a	0.686	0.629-0.771	Reference
Clinical variable + KL-6	0.677	0.642-0.776	.423
Clinical variable + MMP-7	0.697	0.644-0.784	.279
Clinical variable + SP-A	0.714	0.664-0.802	.165
Clinical variable + MMP-7 and SP-A	0.731	0.683-0.818	.061
Clinical variable + KL-6 and MMP-7	0.702	0.658-0.789	.174
Clinical variable + KL-6 and SP-A	0.716	0.669-0.806	.136
Clinical variable + MMP-7, KL-6, and SP-A	0.730	0.691-0.824	.037

Treatment Targets

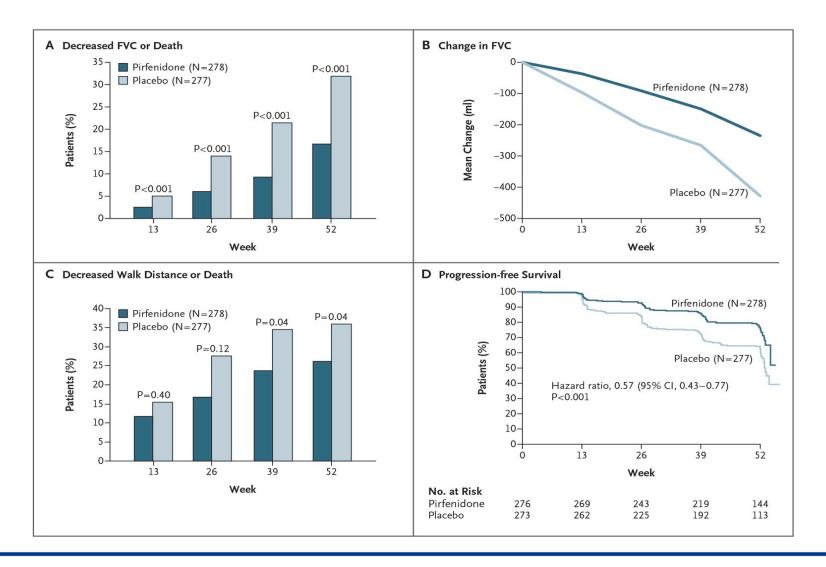
NEGATIVE TRIALS IN IPF

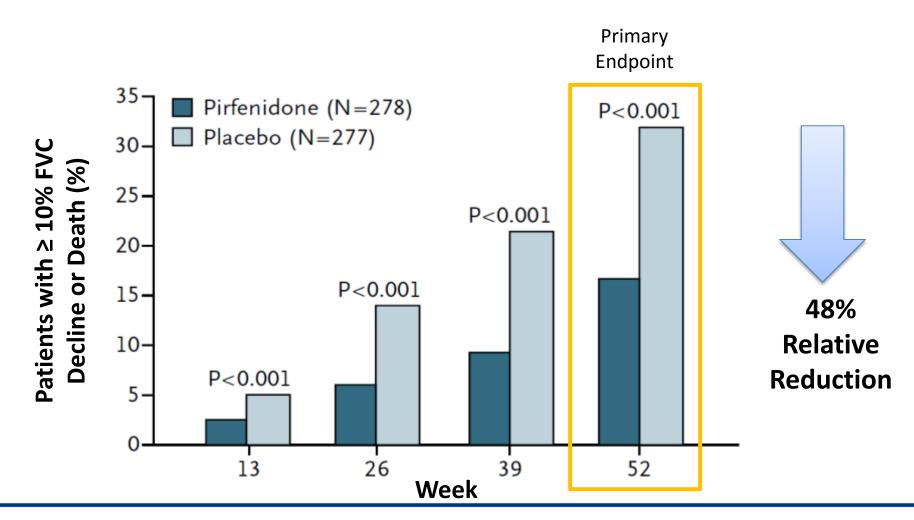
Drug	Primary Endpoint	N	Trial length (weeks)
Imatinib mesylate	FVC drop 10% or death	119	96
Etanercept	FVC and DL _{CO,} % predicted, A-a gradient	88	48
Bosentan (BUILD 1)	Change 6MWT	158	52
Bosentan (BUILD 3)	Dz prog/Death/Exac	616	Events
Ambrisentan	Dz prog/Death/Resp Hosp	660	Events
Warfarin (ACE-IPF)	Death/drop FVC/non-elective hospitalization	248	48
Everolimus	2 nd of FVC/TLC drop 10%, DLCO drop 15%, SaO ₂ -4%	104	156

Beaumont

AMERICAN THORACIC SOCIETY DOCUMENTS

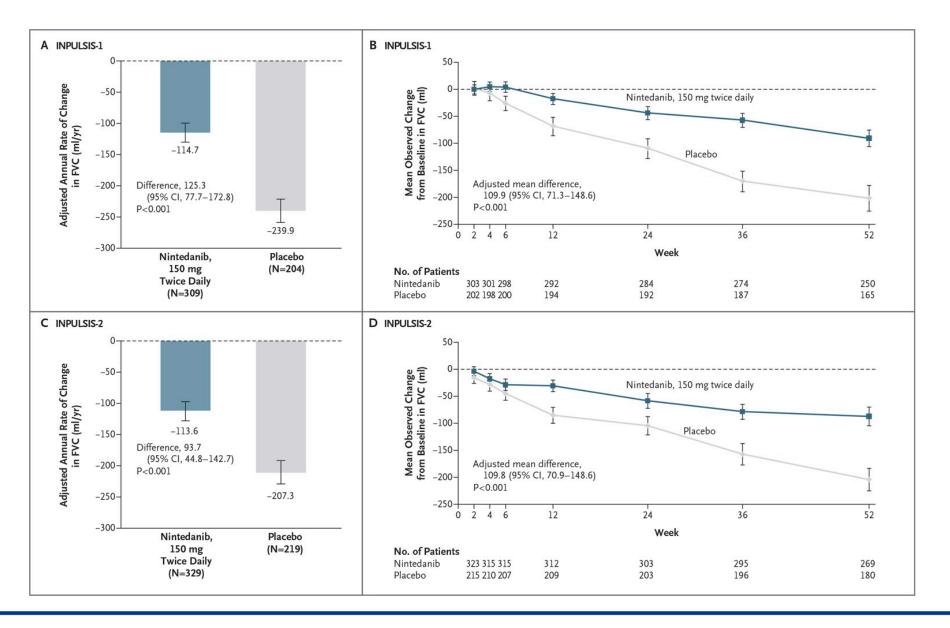
An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline: Treatment of Idiopathic Pulmonary Fibrosis

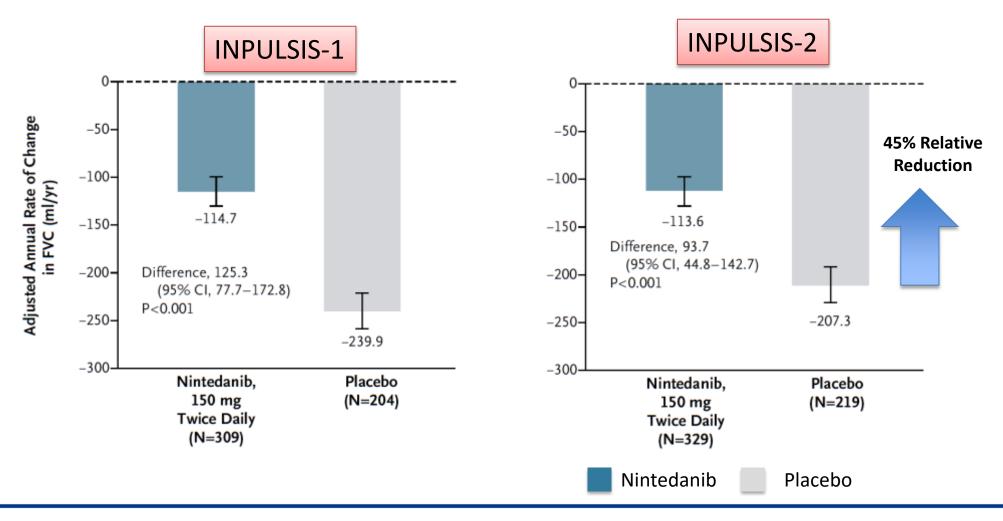

An Update of the 2011 Clinical Practice Guideline


Ganesh Raghu, Bram Rochwerg, Yuan Zhang, Carlos A. Cuello Garcia, Arata Azuma, Juergen Behr, Jan L. Brozek, Harold R. Collard, William Cunningham*, Sakae Homma, Takeshi Johkoh, Fernando J. Martinez, Jeffrey Myers, Shandra L. Protzko, Luca Richeldi, David Rind, Moisés Selman, Arthur Theodore, Athol U. Wells, Henk Hoogsteden, and Holger J. Schünemann; on behalf of the ATS, ERS, JRS, and ALAT

This guideline is dedicated to the memory of Mr. William Cunningham (June 7, 1935-October 23, 2014)

This Official Clinical Practice Guideline of the American Thoracic Society (ATS) was approved by the ATS, May 2015, the European Respiratory Society (ERS), April 2015, the Japanese Respiratory Society (JRS), April 2015, and the Latin American Thoracic Association (ALAT), April 2015


ASCEND Study



King TE, et al. N Engl J Med 2014;370, 2083-2092.

INPULSIS Trials

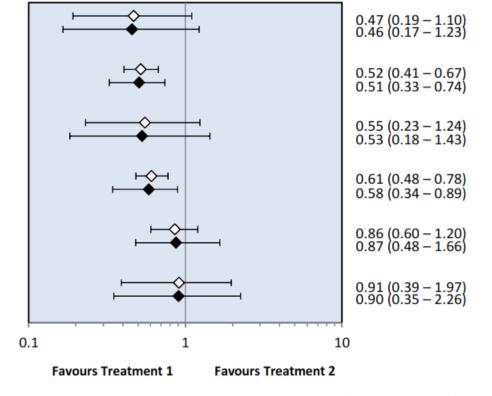
Annual Rate of Change of FVC

Treatment of IPF: Systematic Review and Network Meta-Analysis

Treatment 1 vs. Treatment 2

O.R. (95% Cr.I.)

Pirfenidone versus Imatinib

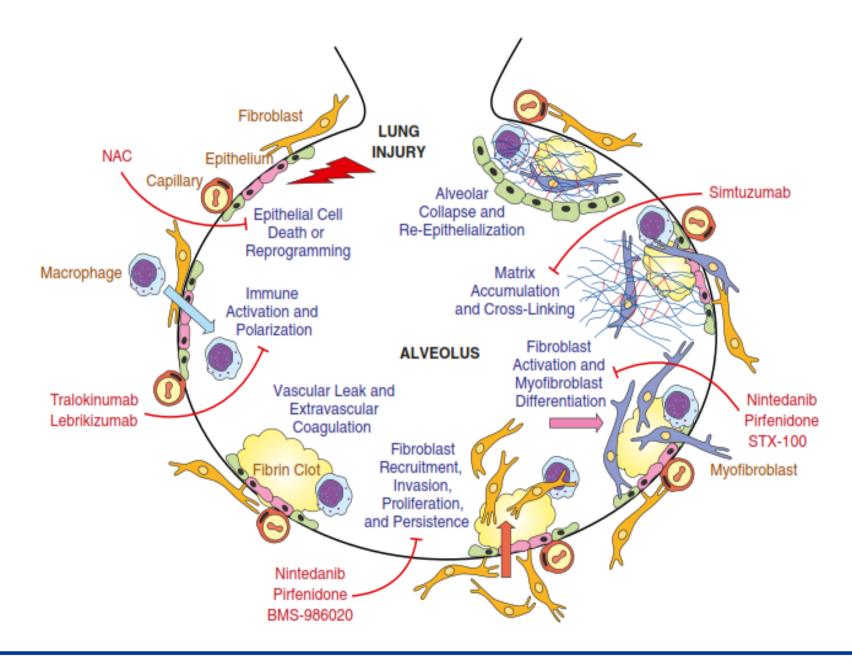

Pirfenidone versus Placebo

Nintedanib versus Imatinib

Nintedanib versus Placebo

Pirfenidone versus Nintedanib

Placebo versus Imatinib



Heterogeneity (Inform.) = 0.1871 95% CrI (0.05564 – 0.5667)

— Fixed Effects

Random Effects (Informative Prior)

Decrease in Percent Predicted FVC by =10%

Agent	Potential mechanism	Clinical trial	Study design	Endpoints	Outcomes
	of action	registry number			
GC1008	Anti-TGFβ antibody	NCT00125385	Phase I study ,non-	Primary end point : Safety and	Completed.
			randomized , open	tolerability	Awaiting results.
			label, single group		
			assignment (n=25)		
BG00011 (formerly known as STX-100)	Anti-ανβ6 integrin	NCT01371305			
Phase II study, randomized, placebo- controlled	Primary end point: Safety and tolerability	Trial ongoing.			
FG-3019	Connective tissue growth factor inhibitor	NCT01890265	Phase II, randomized, placebo-controlled study	Primary end point: Change from baseline in FVC (percent of predicted value) at Week 48	Trial ongoing.
PBI-4050	Connective tissue growth factor and collagen I mRNA expression inhibitor	NCT02538536	Phase II, open-label, Single-arm study	Primary end point: Safety and tolerability	Trial ongoing.
CNTO 888 (Carlumab)	Anti-CCL2 antibody	NCT00786201	Phase II randomized, placebo-controlled study	Primary end points: Safety and efficacy	Trial completed. No benefit on IPF.
QAX576	Anti-IL-13 antibody	NCT00532233	Phase II ,open label study (n=50)	Primary end point: IL-13 serum levels Secondary end point: change in designated serum biomarkers	Completed. Awaiting results.
		NCT01266135	Phase II, randomized, Double-blind, Placebo-controlled study.	Primary end point: Safety, tolerability, and effect on lung function. Change in forced vital capacity (FVC)	Trial terminated.

Tralokinumab	Anti-IL-13 antibody	NCT01629667	Phase II study, prospective, double- blinded, randomized placebo- controlled; (n=186)	Primary end point: Absolute change from baseline in percent predicted forced vital capacity (FVC)	Trial ongoing
Lebrikizumab	Anti-IL-13 antibody	NCT01872689	Phase II, randomized, multicenter, double-blind, placebo-controlled, parallel-group study	Primary end point: Absolute change from baseline in percent predicted forced vital capacity (FVC)	Trial ongoing.
SAR156597	Anti-IL-13 and IL-4 antibody	NCT01529853	Phase II study, prospective, double- blinded, randomized placebo- controlled study	Primary end point: Safety and tolerability Secondary end point: change in FVC, DICO and dyspnea score from baseline	Completed. Awaiting results.
		NCT02345070	Phase II, randomized, double-blind, placebo-controlled study	Primary end point: Efficacy and Safety Absolute change from baseline in percent predicted FVC at 52 weeks Secondary end points: -Proportion of patients with disease progressionNumber of deaths (All causes)	Trial ongoing.
BMS-986020	Lysophosphatidic Acid receptor antagonist	NCT01766817	Phase II, randomized, placebo- controlled study	Primary end point: safety and efficacy Rate of change in forced vital capacity	Trial ongoing
Simtuzumab (GS-6624)					
Anti-LOXL2 antibody	NCT01362231	Part A: Phase I, randomized, placebo-controlled. Part B: Phase I randomized, open label.	Primary end point: Safety, tolerability and pharmacokinetics.	Sponsor aborted trial after interval Data monitoring Committee report	
		NCT01769196	Phase 2 randomized, placebo- controlled, multicenter study.	Primary end point: progression free survival defined as all –cause mortality or decrease in percent predicted in FVC Secondary end point: All-cause mortality.	Trial ongoing.

PRM-151	An anti-fibrotic	NCT02550873	Phase 2, randomized, double-	Primary end point: Safety and efficacy.	Trial ongoing.
	and		blind, placebo controlled, pilot	Forced vital capacity (FVC) percent predicted change from	
	immunomodulator		study .	baseline.	
GSK2126458	PI3Kα and mTOR	NCT01725139		Primary end point: pharmacodynamics measured by inhibition of	Trial ongoing.
(Omipalisib)	inhibitor		Phase I randomized, placebo-	pAKT/AKT in platelet-rich plasma and BAL cells and inhibition of	
			controlled study.	glucose uptake measured by thoracic PET/CT	
Sirolimus	mTOR inhibitor	NCT01462006	Randomized, double-blind,	Primary end point:	
			placebo-controlled pilot study	- Fibrocytes change in peripheral blood concentration of CXCR4+	
				fibrocytes	
				-Number of subjects with drug side-effects	

Disease Specific Treatment

Scleroderma – MMF vs. Cytoxan

Tashkin. N Engl J Med 354:2655–2666, 2006 Clements 2015 ACR/ARHP Annual Meeting Ann Rheum Dis 2015 Jun;74(6):1188-94

Rheumatoid Arthritis

Treatment with anti-inflammatory and/or immunosuppressive agents is recommended regardless of the pattern of fibrosis

Corticosteroids
Cyclophosphamide
Azathioprine
Mycophenalate

Fischer A, J Rheumatol 2013; 40: 640–646. Assayag D Respirology 2014; 19: 493–500

Non-Pharmacological Treatment

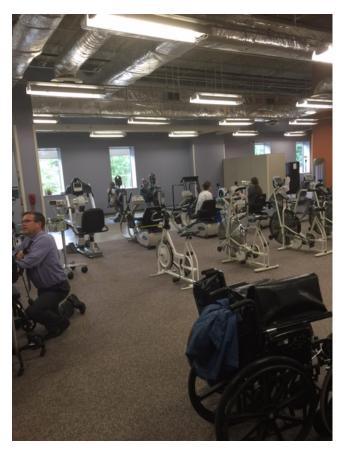
Non – Pharmacological Therapies

Long term oxygen therapy

Recommendation: We recommend that patients with IPF and clinically significant resting hypoxemia should be treated with long-term oxygen therapy (strong recommendation, very low-quality evidence).

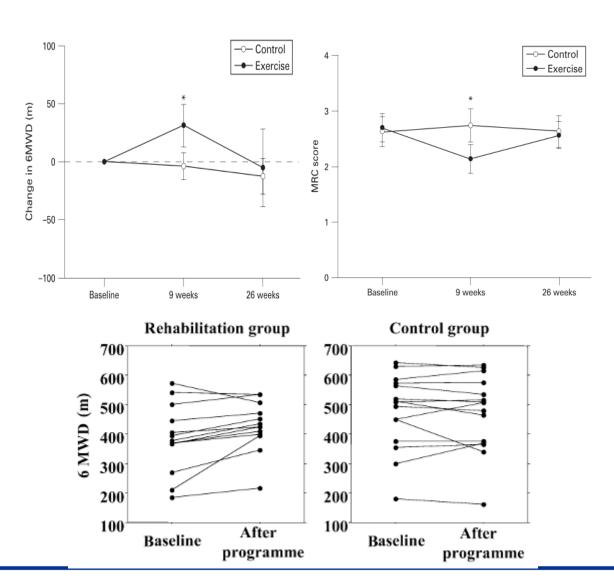
Mechanical ventilation


Recommendation: The majority of patients with respiratory failure due to IPF should not receive mechanical ventilation, but mechanical ventilation may be a reasonable intervention in a minority (weak recommendation, low-quality evidence).


Palliative care

Specific goals for palliative care include relief from physical and emotional suffering and consideration for psychological and spiritual support for patients and caregivers. Such care will need to be individualized. Palliative care should be considered an adjunct to disease-focused care.

Pulmonary rehabilitation


Non – Pharmacological Therapies

- Altered respiratory mechanics
- Impaired gas exchange
- Circulatory limitation
- Peripheral muscle dysfunction

Pulmonary rehabilitation

- Improves 6 minute walk distance
- Decreased dyspnea score
- Improved health related quality of life

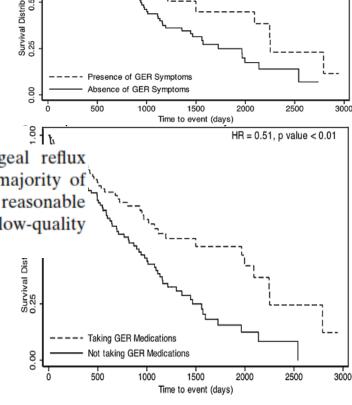
Holland Thorax 2008;63:549–554 Nishiyama Respirology 2008; 1: 394–399 Am J Respir Crit Care Med 188, e13–e64, Oct 15, 2013

Beaumont

Phase	Frequency	Type	Time	Intensity	Considerations
Initial (0-6 weeks)	2-3 times a week	Aerobic Resistance Flexibility Breathing	20-40 min 10-20 min 10-15 min 5 min	50-60% of peak work rate 70-80% of average walking speed on 6MWT Borg scale 3-5	Adjust workloads to be tolerable by the patient Oxygen supplementation for desaturated patients (S_{pO_2} 85–88%) Use interval training modality emphasising that rest periods between exercise bouts allow for resaturation Consider reassessment of patients at the end of 6 weeks
Improvement (6 weeks to 6 months)	2-4 times a week	Aerobic Resistance Flexibility Breathing	20-50 min 20-30 min 10-15 min 5 min	60-85% of peak work rate 80-100% of average walking speed on 6MWT Borg scale 4-7	Gradually increase time and intensity with patient tolerance Oxygen supplementation for desaturated patients (S_pO_2 85–88%) Use interval training modality emphasising that rest periods between exercise bouts allow for resaturation Consider reassessment of patients at the end of 3 and 6 months
Maintenance (≥6 months)	3-4 times a week	Aerobic Resistance Flexibility Breathing	20-50 min 20-30 min 10-15 min 5 min	70-85% of peak work rate 85-100% of average walking speed on 6MWT Borg scale 5-7	Maintain the exercise intensity where possible Oxygen supplementation for desaturated patients (S_{PO_2} 85–88%) Use interval modality emphasising that rest periods between exercise bouts allow for resaturation Consider reassessment of patients at 12 months and every 6 months

Vainshelboim B. Exercise training in idiopathic pulmonary fibrosis: is it of benefit? Breathe 2016; 12: 130–138

Treatment of GERD


- Role of chronic microaspiration
- 204 patients with IPF
- Symptoms of GER (34%), a history of

 GER di*Recommendation: Asymptomatic gastroesophageal reflux
 disease should be medically treated in the majority of patients with IPF, but treatment may not be reasonable

in a minority (weak recommendation, very low-quality

Anti-re evidence).

 increased survival and decreased radiological fibrosis score

HR = 0.62, p value = 0.03

Pulmonary Fibrosis Support Group

Summary